本文整理匯總了Python中cifar10.Cifar10DataSet方法的典型用法代碼示例。如果您正苦於以下問題:Python cifar10.Cifar10DataSet方法的具體用法?Python cifar10.Cifar10DataSet怎麽用?Python cifar10.Cifar10DataSet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cifar10
的用法示例。
在下文中一共展示了cifar10.Cifar10DataSet方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: input_fn
# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import Cifar10DataSet [as 別名]
def input_fn(subset, num_shards):
"""Create input graph for model.
Args:
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
if subset == 'train':
batch_size = FLAGS.train_batch_size
elif subset == 'validate' or subset == 'eval':
batch_size = FLAGS.eval_batch_size
else:
raise ValueError('Subset must be one of \'train\', \'validate\' and \'eval\'')
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and FLAGS.use_distortion_for_training
dataset = cifar10.Cifar10DataSet(FLAGS.data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
示例2: input_fn
# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import Cifar10DataSet [as 別名]
def input_fn(data_dir,
subset,
num_shards,
batch_size,
use_distortion_for_training=True):
"""Create input graph for model.
Args:
data_dir: Directory where TFRecords representing the dataset are located.
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
batch_size: total batch size for training to be divided by the number of
shards.
use_distortion_for_training: True to use distortions.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and use_distortion_for_training
dataset = cifar10.Cifar10DataSet(data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
示例3: main
# 需要導入模塊: import cifar10 [as 別名]
# 或者: from cifar10 import Cifar10DataSet [as 別名]
def main(unused_argv):
# The env variable is on deprecation path, default is set to off.
os.environ['TF_SYNC_ON_FINISH'] = '0'
if FLAGS.num_gpus < 0:
raise ValueError(
'Invalid GPU count: \"num_gpus\" must be 0 or a positive integer.')
if FLAGS.num_gpus == 0 and not FLAGS.is_cpu_ps:
raise ValueError(
'No GPU available for use, must use CPU as parameter server.')
if (FLAGS.num_layers - 2) % 6 != 0:
raise ValueError('Invalid num_layers parameter.')
if FLAGS.num_gpus != 0 and FLAGS.train_batch_size % FLAGS.num_gpus != 0:
raise ValueError('train_batch_size must be multiple of num_gpus.')
if FLAGS.num_gpus != 0 and FLAGS.eval_batch_size % FLAGS.num_gpus != 0:
raise ValueError('eval_batch_size must be multiple of num_gpus.')
num_eval_examples = cifar10.Cifar10DataSet.num_examples_per_epoch('eval')
if num_eval_examples % FLAGS.eval_batch_size != 0:
raise ValueError('validation set size must be multiple of eval_batch_size')
config = tf.estimator.RunConfig()
sess_config = tf.ConfigProto()
sess_config.allow_soft_placement = True
sess_config.log_device_placement = FLAGS.log_device_placement
sess_config.intra_op_parallelism_threads = FLAGS.num_intra_threads
sess_config.inter_op_parallelism_threads = FLAGS.num_inter_threads
sess_config.gpu_options.force_gpu_compatible = FLAGS.force_gpu_compatible
config = config.replace(session_config=sess_config)
classifier = tf.estimator.Estimator(
model_fn=_resnet_model_fn, model_dir=FLAGS.model_dir, config=config)
tensors_to_log = {'learning_rate': 'learning_rate'}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
print('Starting to train...')
classifier.train(
input_fn=functools.partial(
input_fn, subset='train', num_shards=FLAGS.num_gpus),
steps=FLAGS.train_steps,
hooks=[logging_hook])
print('Starting to evaluate...')
eval_results = classifier.evaluate(
input_fn=functools.partial(
input_fn, subset='eval', num_shards=FLAGS.num_gpus),
steps=num_eval_examples // FLAGS.eval_batch_size)
print(eval_results)