當前位置: 首頁>>代碼示例>>Python>>正文


Python cider_scorer.CiderScorer方法代碼示例

本文整理匯總了Python中cider_scorer.CiderScorer方法的典型用法代碼示例。如果您正苦於以下問題:Python cider_scorer.CiderScorer方法的具體用法?Python cider_scorer.CiderScorer怎麽用?Python cider_scorer.CiderScorer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cider_scorer的用法示例。


在下文中一共展示了cider_scorer.CiderScorer方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def __init__(self, n=4, df="corpus"):
        """
        Initialize the CIDEr scoring function
        : param n (int): n-gram size
        : param df (string): specifies where to get the IDF values from
                    takes values 'corpus', 'coco-train'
        : return: None
        """
        # set cider to sum over 1 to 4-grams
        self._n = n
        self._df = df
        self.cider_scorer = CiderScorer(n=self._n, df_mode=self._df) 
開發者ID:xiadingZ,項目名稱:video-caption-openNMT.pytorch,代碼行數:14,代碼來源:cider.py

示例2: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with key <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus 
        """

        assert(gts.keys() == res.keys())
        imgIds = gts.keys()

        cider_scorer = CiderScorer(n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:hadyelsahar,項目名稱:Zeroshot-QuestionGeneration,代碼行數:30,代碼來源:cider.py

示例3: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with key <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus
        """

        assert(set(gts.keys()) == set(res.keys()))
        imgIds = gts.keys()

        cider_scorer = CiderScorer(n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:danieljl,項目名稱:keras-image-captioning,代碼行數:30,代碼來源:cider.py

示例4: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with key <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus 
        """

        # assert(gts.keys() == res.keys())
        assert(sorted(gts.keys()) == sorted(res.keys()))
        imgIds = gts.keys()

        cider_scorer = CiderScorer(df=self.df, n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:eric-xw,項目名稱:AREL,代碼行數:31,代碼來源:cider.py

示例5: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with img_id <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with img_id <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus 
        """

        assert (gts.keys() == res.keys())
        imgIds = gts.keys()

        cider_scorer = CiderScorer(n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert (type(hypo) is list)
            assert (len(hypo) == 1)
            assert (type(ref) is list)
            assert (len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:sheffieldnlp,項目名稱:deepQuest,代碼行數:30,代碼來源:cider.py

示例6: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with key <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus 
        """

        #assert(gts.keys() == res.keys())
        assert(set(gts.keys()) == set(res.keys()))
        imgIds = gts.keys()

        cider_scorer = CiderScorer(n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:rakshithShetty,項目名稱:captionGAN,代碼行數:31,代碼來源:cider.py

示例7: compute_score

# 需要導入模塊: import cider_scorer [as 別名]
# 或者: from cider_scorer import CiderScorer [as 別名]
def compute_score(self, gts, res):
        """
        Main function to compute CIDEr score
        :param  hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence>
                ref_for_image (dict)  : dictionary with key <image> and value <tokenized reference sentence>
        :return: cider (float) : computed CIDEr score for the corpus 
        """

        assert(sorted(gts.keys()) == sorted(res.keys()))
        imgIds = gts.keys()

        cider_scorer = CiderScorer(n=self._n, sigma=self._sigma)

        for id in imgIds:
            hypo = res[id]
            ref = gts[id]

            # Sanity check.
            assert(type(hypo) is list)
            assert(len(hypo) == 1)
            assert(type(ref) is list)
            assert(len(ref) > 0)

            cider_scorer += (hypo[0], ref)

        (score, scores) = cider_scorer.compute_score()

        return score, scores 
開發者ID:fukun07,項目名稱:neural-image-captioning,代碼行數:30,代碼來源:cider.py


注:本文中的cider_scorer.CiderScorer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。