當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.read_image方法代碼示例

本文整理匯總了Python中chainercv.utils.read_image方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.read_image方法的具體用法?Python utils.read_image怎麽用?Python utils.read_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainercv.utils的用法示例。


在下文中一共展示了utils.read_image方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: export_onnx

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def export_onnx(input_image_path, output_path, gpu, only_output=True):
    """Export ResNet50 model to ONNX graph

    'model.onnx' file will be exported under ``output_path``.
    """
    model = C.ResNet50(pretrained_model='imagenet', arch='fb')

    input_image = read_image(input_image_path)
    input_image = scale(input_image, 256)
    input_image = center_crop(input_image, (224, 224))
    input_image -= model.mean
    input_image = input_image[None, :]

    if gpu >= 0:
        model.to_gpu()
        input_image = chainer.cuda.to_gpu(input_image)

    if only_output:
        os.makedirs(output_path, exist_ok=True)
        name = os.path.join(output_path, 'model.onnx')
        export(model, input_image, filename=name)
    else:
        # an input and output given by Chainer will be also emitted
        # for using as test dataset
        export_testcase(model, input_image, output_path) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:export.py

示例2: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--pretrained-model')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('image')
    args = parser.parse_args()

    img = read_image(args.image)
    model = SSPYOLOv2()
    chainer.serializers.load_npz(args.pretrained_model, model)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()
    points, labels, scores = model.predict([img])
    point = points[0]
    label = labels[0]
    score = scores[0]

    vis_point(img, point[:1])
    plt.show() 
開發者ID:chainer,項目名稱:models,代碼行數:22,代碼來源:demo.py

示例3: _get_example

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_example(self, i):
        img_path = os.path.join(self.base_dir, self.img_paths[i].rstrip())
        img = read_image(img_path)

        anno_path = img_path.replace(
            'images', 'labels').replace(
                'JPEGImages', 'labels').replace(
                    '.jpg', '.txt').replace('.png', '.txt')

        anno = np.zeros(50*21)
        if os.path.getsize(anno_path):
            _, H, W = img.shape
            tmp = read_truths_args(anno_path, 8.0/W)
            size = tmp.size
            if size > 50*21:
                anno = tmp[0:50*21]
            elif size > 0:
                anno[0:size] = tmp
        anno = anno.reshape(-1, 21)
        anno = anno[:truths_length(anno)]
        point = anno[:, 1:19].reshape(-1, 9, 2).astype(np.float32)
        point[:, :, 0] *= W
        point[:, :, 1] *= H
        label = anno[:, 0].astype(np.int32)
        return img, point, label 
開發者ID:chainer,項目名稱:models,代碼行數:27,代碼來源:linemod_dataset.py

示例4: get_example

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def get_example(self, i):
        img_id = self.ids[i]
        img_root = os.path.join(
            self.data_dir, 'images', self.img_dirs[img_id])
        img_fn = os.path.join(
            img_root, self.img_props[img_id]['file_name'])
        img = utils.read_image(img_fn, dtype=np.float32, color=True)
        _, H, W = img.shape

        bbox, whole_mask, label, crowded, area = self._get_annotations(i)

        if not self.use_crowded:
            bbox = bbox[np.logical_not(crowded)]
            label = label[np.logical_not(crowded)]
            whole_mask = whole_mask[np.logical_not(crowded)]
            area = area[np.logical_not(crowded)]
            crowded = crowded[np.logical_not(crowded)]

        example = [img, bbox, whole_mask, label]
        if self.return_crowded:
            example += [crowded]
        if self.return_area:
            example += [area]
        return tuple(example) 
開發者ID:knorth55,項目名稱:chainer-fcis,代碼行數:26,代碼來源:coco_instance_segmentation_dataset.py

示例5: _get_image

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_image(self, i):
        image_file_name = self.image_file_names[i]
        image_file_path = os.path.join(self.images_dir_path, image_file_name)
        image = read_image(image_file_path, color=True)
        if self._transform is not None:
            image = self._transform(image)
        return image 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:9,代碼來源:cub200_2011_cls_dataset.py

示例6: export_onnx

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def export_onnx(input_image_path, output_path, gpu, only_output=True):
    """Export YOLOv2 Tiny model to ONNX graph

    'model.onnx' file will be exported under ``output_path``.
    """
    model = YOLOv2Tiny(pretrained_model='voc0712')

    input_image = read_image(input_image_path)
    input_image = input_image[None, :]

    if gpu >= 0:
        model.to_gpu()
        input_image = chainer.cuda.to_gpu(input_image)

    if only_output:
        os.makedirs(output_path, exist_ok=True)
        name = os.path.join(output_path, 'model.onnx')
        export(
            model, input_image, filename=name,
            output_names=('locs', 'objs', 'confs'))
    else:
        # an input and output given by Chainer will be also emitted
        # for using as test dataset
        export_testcase(
            model, input_image, output_path,
            output_names=('locs', 'objs', 'confs')) 
開發者ID:chainer,項目名稱:chainer,代碼行數:28,代碼來源:export.py

示例7: _get_msk

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_msk(self, i):
        img_path = os.path.join(self.base_dir, self.img_paths[i].rstrip())
        mskpath = img_path.replace('JPEGImages', 'mask').replace(
            '/00', '/').replace('.jpg', '.png')
        msk = read_image(mskpath, color=False)[0]
        return msk > 0 
開發者ID:chainer,項目名稱:models,代碼行數:8,代碼來源:linemod_dataset.py

示例8: _get_img

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_img(self, i):
        video_id, frame_id = self._get_ids(i)
        anno = self.annos[self.video_names[video_id]]
        img_path = os.path.join(self.img_dir, anno['img_names'][frame_id])
        return read_image(img_path) 
開發者ID:chainer,項目名稱:models,代碼行數:7,代碼來源:vot_tracking_dataset.py

示例9: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument('image')
    args = parser.parse_args()

    model = ResNet50(
        pretrained_model=args.pretrained_model,
        n_class=len(voc_bbox_label_names))
    model.pick = 'fc6'
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    predict_func = PredictFunc(model, thresh=0.5)
    labels, scores = predict_func([img])
    label = labels[0]
    score = scores[0]

    print('predicted labels')
    for lb, sc in zip(label, score):
        print('names={}  score={:.4f}'.format(
            voc_bbox_label_names[lb], sc))

    vis_image(img)
    plt.show() 
開發者ID:chainer,項目名稱:models,代碼行數:30,代碼來源:demo.py

示例10: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument('--input-size', type=int, default=448)
    args = parser.parse_args()

    label_names = voc_semantic_segmentation_label_names
    colors = voc_semantic_segmentation_label_colors
    n_class = len(label_names)

    input_size = (args.input_size, args.input_size)
    model = get_pspnet_resnet50(n_class)
    chainer.serializers.load_npz(args.pretrained_model, model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu(args.gpu)

    dataset = get_sbd_augmented_voc()
    for i in range(1, 100):
        img = dataset[i][0]

        # img = read_image(args.image)
        labels = model.predict([img])
        label = labels[0]

        from chainercv.utils import write_image
        write_image(
            label[None], '{}.png'.format(i))

        fig = plt.figure()
        ax1 = fig.add_subplot(1, 2, 1)
        vis_image(img, ax=ax1)
        ax2 = fig.add_subplot(1, 2, 2)
        ax2, legend_handles = vis_semantic_segmentation(
            img, label, label_names, colors, ax=ax2)
        ax2.legend(handles=legend_handles, bbox_to_anchor=(1, 1), loc=2)

        plt.show() 
開發者ID:chainer,項目名稱:models,代碼行數:42,代碼來源:demo.py

示例11: _get_image

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_image(self, i):
        img_path = os.path.join(
            self.data_dir, 'JPEGImages', self.ids[i] + '.jpg')
        img = read_image(img_path, color=True)
        return img 
開發者ID:chainer,項目名稱:models,代碼行數:7,代碼來源:voc_semantic_segmentation_with_bbox_dataset.py

示例12: _get_label

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def _get_label(self, i):
        label_path = os.path.join(
            self.data_dir, 'SegmentationClass', self.ids[i] + '.png')
        label = read_image(label_path, dtype=np.int32, color=False)
        label[label == 255] = -1
        # (1, H, W) -> (H, W)
        return label[0] 
開發者ID:chainer,項目名稱:models,代碼行數:9,代碼來源:voc_semantic_segmentation_with_bbox_dataset.py

示例13: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model', choices=('ssd300', 'ssd512'), default='ssd300')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument(
        '--dataset', choices=('voc',), default='voc')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.model == 'ssd300':
        cls = SSD300
    elif args.model == 'ssd512':
        cls = SSD512

    if args.dataset == 'voc':
        if args.pretrained_model is None:
            args.pretrained_model = 'voc0712'
        label_names = voc_bbox_label_names

    model = cls(n_fg_class=len(label_names),
                pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    bboxes, labels, scores = model.predict([img])
    bbox, label, score = bboxes[0], labels[0], scores[0]

    vis_bbox(
        img, bbox, label, score, label_names=label_names)
    plt.show() 
開發者ID:chainer,項目名稱:chainercv,代碼行數:37,代碼來源:demo.py

示例14: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    chainer.config.train = False

    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument('--dataset', choices=('camvid',), default='camvid')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.dataset == 'camvid':
        if args.pretrained_model is None:
            args.pretrained_model = 'camvid'
        label_names = camvid_label_names
        colors = camvid_label_colors

    model = SegNetBasic(
        n_class=len(label_names),
        pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    labels = model.predict([img])
    label = labels[0]

    fig = plt.figure()
    ax1 = fig.add_subplot(1, 2, 1)
    vis_image(img, ax=ax1)
    ax2 = fig.add_subplot(1, 2, 2)
    # Do not overlay the label image on the color image
    vis_semantic_segmentation(None, label, label_names, colors, ax=ax2)
    plt.show() 
開發者ID:chainer,項目名稱:chainercv,代碼行數:37,代碼來源:demo.py

示例15: main

# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import read_image [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model', choices=('yolo_v2', 'yolo_v2_tiny', 'yolo_v3'),
        default='yolo_v2')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    parser.add_argument(
        '--dataset', choices=('voc',), default='voc')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.model == 'yolo_v2':
        cls = YOLOv2
    elif args.model == 'yolo_v2_tiny':
        cls = YOLOv2Tiny
    elif args.model == 'yolo_v3':
        cls = YOLOv3

    if args.dataset == 'voc':
        if args.pretrained_model is None:
            args.pretrained_model = 'voc0712'
        label_names = voc_bbox_label_names

    model = cls(n_fg_class=len(label_names),
                pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    bboxes, labels, scores = model.predict([img])
    bbox, label, score = bboxes[0], labels[0], scores[0]

    vis_bbox(
        img, bbox, label, score, label_names=label_names)
    plt.show() 
開發者ID:chainer,項目名稱:chainercv,代碼行數:40,代碼來源:demo.py


注:本文中的chainercv.utils.read_image方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。