本文整理匯總了Python中chainercv.utils.apply_to_iterator方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.apply_to_iterator方法的具體用法?Python utils.apply_to_iterator怎麽用?Python utils.apply_to_iterator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainercv.utils
的用法示例。
在下文中一共展示了utils.apply_to_iterator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_apply_to_iterator_with_infinite_iterator
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def test_apply_to_iterator_with_infinite_iterator(self):
def func(*in_values):
n_sample = len(in_values[0])
return [np.random.uniform(size=(48, 64)) for _ in range(n_sample)]
dataset = []
for _ in range(5):
H, W = np.random.randint(8, 16, size=2)
dataset.append(np.random.randint(0, 256, size=(3, H, W)))
iterator = SerialIterator(dataset, 2)
in_values, out_values, rest_values = apply_to_iterator(func, iterator)
for _ in range(10):
next(in_values[0])
for _ in range(10):
next(out_values[0])
示例2: evaluate
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def evaluate(self):
iterator = self._iterators['main']
target = self._targets['main']
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
in_values, out_values, rest_values = apply_to_iterator(
target.predict, it)
# delete unused iterators explicitly
del in_values
points, labels, scores = out_values
gt_points, gt_labels = rest_values
result = eval_projected_3d_bbox_single(
points, scores, gt_points,
self.vertex, self.intrinsics, diam=self.diam)
report = result
observation = {}
with reporter.report_scope(observation):
reporter.report(report, target)
return observation
示例3: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--pretrained-model')
args = parser.parse_args()
model = ResNet50(
pretrained_model=args.pretrained_model,
n_class=len(voc_bbox_label_names), arch='he')
model.pick = 'fc6'
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
dataset = VOCBboxDataset(
split='test', year='2007', use_difficult=False)
dataset = TransformDataset(
dataset, ('img', 'bbox'), bbox_to_multi_label)
iterator = iterators.SerialIterator(
dataset, 8, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
PredictFunc(model, thresh=0), iterator,
hook=ProgressHook(len(dataset)))
# delete unused iterators explicitly
del in_values
pred_labels, pred_scores = out_values
gt_labels, = rest_values
result = eval_multi_label_classification(
pred_labels, pred_scores, gt_labels)
print()
print('mAP: {:f}'.format(result['map']))
for l, name in enumerate(voc_bbox_label_names):
if result['ap'][l]:
print('{:s}: {:f}'.format(name, result['ap'][l]))
else:
print('{:s}: -'.format(name))
示例4: evaluate
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def evaluate(self):
iterator = self._iterators['main']
target = self._targets['main']
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
in_values, out_values, rest_values = apply_to_iterator(
self.predict_func, it)
# delete unused iterators explicitly
del in_values
pred_labels, pred_scores = out_values
gt_labels, = rest_values
result = eval_multi_label_classification(
pred_labels, pred_scores, gt_labels)
report = {'map': result['map']}
if self.label_names is not None:
for l, label_name in enumerate(self.label_names):
try:
report['ap/{:s}'.format(label_name)] = result['ap'][l]
except IndexError:
report['ap/{:s}'.format(label_name)] = np.nan
observation = {}
with reporter.report_scope(observation):
reporter.report(report, target)
return observation
示例5: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset', choices=('cityscapes', 'ade20k', 'camvid', 'voc'))
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--pretrained-model')
parser.add_argument('--batchsize', type=int)
parser.add_argument('--input-size', type=int, default=None)
args = parser.parse_args()
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model,
args.batchsize, args.input_size)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
iterator = iterators.SerialIterator(
dataset, batchsize, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
model.predict, iterator, hook=ProgressHook(len(dataset)))
# Delete an iterator of images to save memory usage.
del in_values
eval_(out_values, rest_values)
示例6: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset', choices=('cityscapes', 'ade20k', 'camvid', 'voc'))
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--pretrained-model')
parser.add_argument('--batchsize', type=int)
parser.add_argument('--input-size', type=int, default=None)
args = parser.parse_args()
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model,
args.batchsize, args.input_size)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
if not comm.rank == 0:
apply_to_iterator(model.predict, None, comm=comm)
return
it = iterators.MultithreadIterator(
dataset, batchsize * comm.size, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
model.predict, it, hook=ProgressHook(len(dataset)), comm=comm)
# Delete an iterator of images to save memory usage.
del in_values
eval_(out_values, rest_values)
示例7: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=('voc', 'coco'))
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--pretrained-model')
parser.add_argument('--batchsize', type=int)
parser.add_argument('--gpu', type=int, default=-1)
args = parser.parse_args()
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model, args.batchsize)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
model.use_preset('evaluate')
iterator = iterators.MultithreadIterator(
dataset, batchsize, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
model.predict, iterator, hook=ProgressHook(len(dataset)))
# delete unused iterators explicitly
del in_values
eval_(out_values, rest_values)
示例8: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=('voc', 'coco'))
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--pretrained-model')
parser.add_argument('--batchsize', type=int)
args = parser.parse_args()
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model, args.batchsize)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
model.use_preset('evaluate')
if not comm.rank == 0:
apply_to_iterator(model.predict, None, comm=comm)
return
iterator = iterators.MultithreadIterator(
dataset, batchsize * comm.size, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
model.predict, iterator, hook=ProgressHook(len(dataset)), comm=comm)
# delete unused iterators explicitly
del in_values
eval_(out_values, rest_values)
示例9: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser(
description='Evaluating convnet from ILSVRC2012 dataset')
parser.add_argument('val', help='Path to root of the validation dataset')
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--pretrained-model')
parser.add_argument('--dataset', choices=('imagenet',))
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--batchsize', type=int)
parser.add_argument('--crop', choices=('center', '10'))
parser.add_argument('--resnet-arch')
args = parser.parse_args()
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model, args.batchsize,
args.val, args.crop, args.resnet_arch)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
iterator = iterators.MultiprocessIterator(
dataset, batchsize, repeat=False, shuffle=False,
n_processes=6, shared_mem=300000000)
print('Model has been prepared. Evaluation starts.')
in_values, out_values, rest_values = apply_to_iterator(
model.predict, iterator, hook=ProgressHook(len(dataset)))
del in_values
eval_(out_values, rest_values)
示例10: main
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=('sbd', 'coco'))
parser.add_argument('--model', choices=sorted(models.keys()))
parser.add_argument('--pretrained-model')
parser.add_argument('--batchsize', type=int)
args = parser.parse_args()
comm = chainermn.create_communicator('pure_nccl')
device = comm.intra_rank
dataset, eval_, model, batchsize = setup(
args.dataset, args.model, args.pretrained_model, args.batchsize)
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
if not comm.rank == 0:
apply_to_iterator(model.predict, None, comm=comm)
return
iterator = iterators.MultithreadIterator(
dataset, batchsize * comm.size, repeat=False, shuffle=False)
in_values, out_values, rest_values = apply_to_iterator(
model.predict, iterator, hook=ProgressHook(len(dataset)), comm=comm)
# delete unused iterators explicitly
del in_values
eval_(out_values, rest_values)
示例11: evaluate
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def evaluate(self):
target = self._targets['main']
if self.comm is not None and self.comm.rank != 0:
apply_to_iterator(target.predict, None, comm=self.comm)
return {}
iterator = self._iterators['main']
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
in_values, out_values, rest_values = apply_to_iterator(
target.predict, it, comm=self.comm)
# delete unused iterators explicitly
del in_values
pred_labels, = out_values
gt_labels, = rest_values
result = eval_semantic_segmentation(pred_labels, gt_labels)
report = {'miou': result['miou'],
'pixel_accuracy': result['pixel_accuracy'],
'mean_class_accuracy': result['mean_class_accuracy']}
if self.label_names is not None:
for l, label_name in enumerate(self.label_names):
try:
report['iou/{:s}'.format(label_name)] = result['iou'][l]
report['class_accuracy/{:s}'.format(label_name)] =\
result['class_accuracy'][l]
except IndexError:
report['iou/{:s}'.format(label_name)] = np.nan
report['class_accuracy/{:s}'.format(label_name)] = np.nan
observation = {}
with reporter.report_scope(observation):
reporter.report(report, target)
return observation
示例12: evaluate
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def evaluate(self):
target = self._targets['main']
if self.comm is not None and self.comm.rank != 0:
apply_to_iterator(target.predict, None, comm=self.comm)
return {}
iterator = self._iterators['main']
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
in_values, out_values, rest_values = apply_to_iterator(
target.predict, it, comm=self.comm)
# delete unused iterators explicitly
del in_values
pred_masks, pred_labels, pred_scores = out_values
gt_masks, gt_labels = rest_values
result = eval_instance_segmentation_voc(
pred_masks, pred_labels, pred_scores,
gt_masks, gt_labels,
iou_thresh=self.iou_thresh,
use_07_metric=self.use_07_metric)
report = {'map': result['map']}
if self.label_names is not None:
for l, label_name in enumerate(self.label_names):
try:
report['ap/{:s}'.format(label_name)] = result['ap'][l]
except IndexError:
report['ap/{:s}'.format(label_name)] = np.nan
observation = {}
with reporter.report_scope(observation):
reporter.report(report, target)
return observation
示例13: test_progress_hook
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def test_progress_hook(self):
iterator = SerialIterator(self.dataset, 2, repeat=False)
in_values, out_values, rest_values = apply_to_iterator(
self.func, iterator,
hook=ProgressHook(n_total=len(self.dataset)))
# consume all data
for _ in in_values[0]:
pass
示例14: test_progress_hook_with_infinite_iterator
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def test_progress_hook_with_infinite_iterator(self):
iterator = SerialIterator(self.dataset, 2)
in_values, out_values, rest_values = apply_to_iterator(
self.func, iterator, hook=ProgressHook())
for _ in range(10):
next(in_values[0])
示例15: _check_apply_to_iterator
# 需要導入模塊: from chainercv import utils [as 別名]
# 或者: from chainercv.utils import apply_to_iterator [as 別名]
def _check_apply_to_iterator(self, comm=None):
values = apply_to_iterator(
self.func, self.iterator, n_input=self.n_input,
hook=self.hook, comm=comm)
if comm is not None and not comm.rank == 0:
self.assertEqual(values, None)
return
in_values, out_values, rest_values = values
self.assertEqual(len(in_values), self.n_input)
for in_vals, in_vals_expect in \
zip_longest(in_values, self.in_values_expect):
for in_val, in_val_expect in zip_longest(in_vals, in_vals_expect):
np.testing.assert_equal(in_val, in_val_expect)
self.assertEqual(len(out_values), self.n_output)
for out_vals in out_values:
self.assertEqual(len(list(out_vals)), len(self.dataset))
self.assertEqual(len(rest_values), self.n_rest)
for rest_vals, rest_vals_expect in \
zip_longest(rest_values, self.rest_values_expect):
for rest_val, rest_val_expect in \
zip_longest(rest_vals, rest_vals_expect):
if isinstance(rest_val_expect, np.ndarray):
np.testing.assert_equal(rest_val, rest_val_expect)
else:
self.assertEqual(rest_val, rest_val_expect)