本文整理匯總了Python中chainercv.transforms.resize方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.resize方法的具體用法?Python transforms.resize怎麽用?Python transforms.resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainercv.transforms
的用法示例。
在下文中一共展示了transforms.resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def __call__(self, imgs):
resized_imgs = []
for img in imgs:
_, H, W = img.shape
scale = self._min_size / min(H, W)
if scale * max(H, W) > self._max_size:
scale = self._max_size / max(H, W)
H, W = int(H * scale), int(W * scale)
img = transforms.resize(img, (H, W))
img -= self._mean
resized_imgs.append(img)
size = np.array([img.shape[1:] for img in resized_imgs]).max(axis=0)
size = (np.ceil(size / self._stride) * self._stride).astype(int)
x = np.zeros((len(imgs), 3, size[0], size[1]), dtype=np.float32)
for i, img in enumerate(resized_imgs):
_, H, W = img.shape
x[i, :, :H, :W] = img
return x
示例2: test
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def test(self):
H = 80
W = 90
n_inst = 10
mask = np.zeros((n_inst, H, W), dtype=np.bool)
bbox = generate_random_bbox(n_inst, (H, W), 10, 30).astype(np.int32)
for i, bb in enumerate(bbox):
y_min, x_min, y_max, x_max = bb
m = np.random.randint(0, 2, size=(y_max - y_min, x_max - x_min))
m[5, 5] = 1 # At least one element is one
mask[i, y_min:y_max, x_min:x_max] = m
bbox = mask_to_bbox(mask)
size = H * 2
out_H = size
out_W = W * 2
out_mask = scale_mask(mask, bbox, size)
expected = resize(
mask.astype(np.float32), (out_H, out_W),
interpolation=PIL.Image.NEAREST).astype(np.bool)
np.testing.assert_equal(out_mask, expected)
示例3: get_example
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def get_example(self, i):
with Image.open(str(self.filepaths[i])) as f:
target = img_to_chw_array(f)
target = random_crop(target, (self.fine_size, self.fine_size))
target = random_flip(target, x_random=True)
if self.random_nn:
source = resize(
downscale_random_nearest_neighbor(target.copy()),
(self.fine_size, self.fine_size), Image.NEAREST,
)
else:
source = resize(
resize(
target,
(self.fine_size // 2, self.fine_size // 2), Image.NEAREST,
),
(self.fine_size, self.fine_size), Image.NEAREST,
)
return source, target
示例4: __call__
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def __call__(self, in_data):
img, label = in_data
img = random_sized_crop(img)
img = resize(img, (224, 224))
img = random_flip(img, x_random=True)
img -= self.mean
return img, label
示例5: __call__
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def __call__(self, in_data):
img, mask, label = in_data
bbox = mask_to_bbox(mask)
_, orig_H, orig_W = img.shape
img = self.fcis.prepare(img)
_, H, W = img.shape
scale = H / orig_H
mask = transforms.resize(mask.astype(np.float32), (H, W))
bbox = transforms.resize_bbox(bbox, (orig_H, orig_W), (H, W))
img, params = transforms.random_flip(
img, x_random=True, return_param=True)
mask = transforms.flip(mask, x_flip=params['x_flip'])
bbox = transforms.flip_bbox(bbox, (H, W), x_flip=params['x_flip'])
return img, mask, label, bbox, scale
示例6: __call__
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def __call__(self, in_data):
if len(in_data) == 4:
img, mask, label, bbox = in_data
else:
img, bbox, label = in_data
# Flipping
img, params = transforms.random_flip(
img, x_random=True, return_param=True)
x_flip = params['x_flip']
bbox = transforms.flip_bbox(
bbox, img.shape[1:], x_flip=x_flip)
# Scaling and mean subtraction
img, scale = scale_img(
img, self.min_size, self.max_size)
img -= self.mean
bbox = bbox * scale
if len(in_data) == 4:
mask = transforms.flip(mask, x_flip=x_flip)
mask = transforms.resize(
mask.astype(np.float32),
img.shape[1:],
interpolation=PIL.Image.NEAREST).astype(np.bool)
return img, bbox, label, mask
else:
return img, bbox, label
示例7: _prepare
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def _prepare(self, img):
img = img.astype(np.float32)
img = transforms.resize(img, (self.insize, self.insize))
img -= self.mean
return img
示例8: predict
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def predict(self, imgs):
"""Conduct semantic segmentations from images.
Args:
imgs (iterable of numpy.ndarray): Arrays holding images.
All images are in CHW and RGB format
and the range of their values are :math:`[0, 255]`.
Returns:
list of numpy.ndarray:
List of integer labels predicted from each image in the input \
list.
"""
labels = []
for img in imgs:
C, H, W = img.shape
with chainer.using_config('train', False), \
chainer.function.no_backprop_mode():
x = chainer.Variable(self.xp.asarray(img[np.newaxis]))
score = self.forward(x)[0].array
score = chainer.backends.cuda.to_cpu(score)
if score.shape != (C, H, W):
dtype = score.dtype
score = resize(score, (H, W)).astype(dtype)
label = np.argmax(score, axis=0).astype(np.int32)
labels.append(label)
return labels
示例9: _get_proba
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def _get_proba(self, img, scale, flip):
if flip:
img = img[:, :, ::-1]
_, H, W = img.shape
if scale == 1.0:
h, w = H, W
else:
h, w = int(H * scale), int(W * scale)
img = resize(img, (h, w))
img = self.prepare(img)
x = chainer.Variable(self.xp.asarray(img[np.newaxis]))
x = self.forward(x)
x = F.softmax(x, axis=1)
score = F.resize_images(x, img.shape[1:])[0, :, :h, :w].array
score = chainer.backends.cuda.to_cpu(score)
if scale != 1.0:
score = resize(score, (H, W))
if flip:
score = score[:, :, ::-1]
return score
示例10: _prepare
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def _prepare(self, img):
"""Prepare an image for feeding it to a model.
This is a standard preprocessing scheme used by feature extraction
models.
First, the image is scaled or resized according to :math:`scale_size`.
Note that this step is optional.
Next, the image is cropped to :math:`crop_size`.
Last, the image is mean subtracted by an array :obj:`mean`.
Args:
img (~numpy.ndarray): An image. This is in CHW format.
The range of its value is :math:`[0, 255]`.
Returns:
~numpy.ndarray:
A preprocessed image. This is 4D array whose batch size is
the number of crops.
"""
if self.scale_size is not None:
if isinstance(self.scale_size, int):
img = scale(img, size=self.scale_size)
else:
img = resize(img, size=self.scale_size)
else:
img = img.copy()
if self.crop == '10':
imgs = ten_crop(img, self.crop_size)
elif self.crop == 'center':
imgs = center_crop(img, self.crop_size)[np.newaxis]
imgs -= self.mean[np.newaxis]
return imgs
示例11: scale_img
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def scale_img(img, min_size, max_size):
"""Process image."""
_, H, W = img.shape
scale = min_size / min(H, W)
if scale * max(H, W) > max_size:
scale = max_size / max(H, W)
H, W = int(H * scale), int(W * scale)
img = transforms.resize(img, (H, W))
return img, scale
示例12: test_resize_color
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def test_resize_color(self):
if self.backend == 'cv2' and not _cv2_available:
return
img = np.random.uniform(size=(3, 24, 32))
with chainer.using_config('cv_resize_backend', self.backend):
out = resize(img, size=(32, 64), interpolation=self.interpolation)
self.assertEqual(out.shape, (3, 32, 64))
示例13: test_resize_grayscale
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def test_resize_grayscale(self):
if self.backend == 'cv2' and not _cv2_available:
return
img = np.random.uniform(size=(1, 24, 32))
with chainer.using_config('cv_resize_backend', self.backend):
out = resize(img, size=(32, 64), interpolation=self.interpolation)
self.assertEqual(out.shape, (1, 32, 64))
示例14: test_zero_length_img
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def test_zero_length_img(self):
if self.backend == 'cv2' and not _cv2_available:
return
img = np.random.uniform(size=(0, 24, 32))
with chainer.using_config('cv_resize_backend', self.backend):
out = resize(img, size=(32, 64), interpolation=self.interpolation)
self.assertEqual(out.shape, (0, 32, 64))
示例15: test_invalid_backend
# 需要導入模塊: from chainercv import transforms [as 別名]
# 或者: from chainercv.transforms import resize [as 別名]
def test_invalid_backend(self):
img = np.random.uniform(size=(3, 24, 32))
with chainer.using_config('cv_resize_backend', 'PII'):
with self.assertRaises(ValueError):
resize(img, size=(32, 64))