當前位置: 首頁>>代碼示例>>Python>>正文


Python variable.Variable方法代碼示例

本文整理匯總了Python中chainer.variable.Variable方法的典型用法代碼示例。如果您正苦於以下問題:Python variable.Variable方法的具體用法?Python variable.Variable怎麽用?Python variable.Variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.variable的用法示例。


在下文中一共展示了variable.Variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _forward_for_backward_gradients

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def _forward_for_backward_gradients(self):
        func = self.func
        xs = self.xs
        params = self.params

        xs = [
            None if x is None
            else variable.Variable(x, requires_grad=x.dtype.kind == 'f')
            for x in xs]

        if self.is_immutable_params:
            params = tuple([chainer.Parameter(p) for p in params])
            ys = func(xs, params)
        else:
            ys = func(*xs)

        ys = _as_tuple(ys)

        # Clear gradients which may exist if func calls backward inside of
        # itself.
        self._clear_grads(xs)
        self._clear_grads(params)

        return xs, ys, params 
開發者ID:chainer,項目名稱:chainer,代碼行數:26,代碼來源:gradient_check.py

示例2: update_core

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def update_core(self, param):
        """Updates the parameter.

        Implementation of UpdateRule should override this method or both of
        :meth:`update_core_cpu` and :meth:`update_core_gpu`.

        Args:
            param (~chainer.Variable): Variable to be updated.

        """
        device = param.device
        with chainer.using_device(device):
            if device.xp is chainerx:
                self.update_core_chainerx(param)
            elif device.xp is numpy:
                self.update_core_cpu(param)
            else:
                self.update_core_gpu(param) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:optimizer.py

示例3: reallocate_cleared_grads

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def reallocate_cleared_grads(self):
        """Reallocate gradients cleared by :meth:`~chainer.Variable.cleargrad`.

        This method allocates arrays for all gradients which have :obj:`None`.
        This method is called before and after every optimizer hook.
        If an inheriting optimizer does not require this allocation,
        the optimizer can override this method with a blank function.

        """
        for name, param in self.target.namedparams(False):
            with variable._AllowArrayAccessWithNonstandardLayout():
                has_grad = param.grad is not None
            if not has_grad:
                device = param.device
                with chainer.using_device(device):
                    param._set_grad(
                        device.xp.zeros_like(param.raw_array),
                        layout_check=False) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:optimizer.py

示例4: add

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def add(self, d):
        """Adds a dictionary of scalars.

        Args:
            d (dict): Dictionary of scalars to accumulate. Only elements of
               scalars, zero-dimensional arrays, and variables of
               zero-dimensional arrays are accumulated. When the value
               is a tuple, the second element is interpreted as a weight.

        """
        summaries = self._summaries
        for k, v in six.iteritems(d):
            w = 1
            if isinstance(v, tuple):
                w = v[1]
                v = v[0]
                if isinstance(w, variable.Variable):
                    w = w.array
                if not numpy.isscalar(w) and not getattr(w, 'ndim', -1) == 0:
                    raise ValueError(
                        'Given weight to {} was not scalar.'.format(k))
            if isinstance(v, variable.Variable):
                v = v.array
            if numpy.isscalar(v) or getattr(v, 'ndim', -1) == 0:
                summaries[k].add(v, weight=w) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:reporter.py

示例5: set_state

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def set_state(self, c, h):
        """Sets the internal state.

        It sets the :attr:`c` and :attr:`h` attributes.

        Args:
            c (~chainer.Variable): A new cell states of LSTM units.
            h (~chainer.Variable): A new output at the previous time step.

        """
        assert isinstance(c, variable.Variable)
        assert isinstance(h, variable.Variable)
        c.to_device(self.device)
        h.to_device(self.device)
        self.c = c
        self.h = h 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:lstm.py

示例6: forward

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def forward(self, x, t):
        """Computes the loss value for given input and ground truth labels.

        Args:
            x (~chainer.Variable): Input of the weight matrix multiplication.
            t (~chainer.Variable): Batch of ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        batch_size = x.shape[0]
        if self.sample_data is not None:
            # for test
            sample_data = self.sample_data
        else:
            shape = (batch_size, self.sample_size)
            sample_data = self.sampler.sample(shape)
        samples = variable.Variable(sample_data, requires_grad=False)
        return black_out.black_out(x, t, self.W, samples) 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:black_out.py

示例7: from_params

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def from_params(cls, W, b=None, nobias=False):
        """Initialize a :class:`~chainer.links.Linear` with given parameters.

        This method uses ``W`` and optional ``b`` to initialize a linear layer.

        Args:
            W (:class:`~chainer.Variable` or :ref:`ndarray`):
                The weight parameter.
            b (:class:`~chainer.Variable`, :ref:`ndarray`, or ``None``):
                The bias parameter.
            nobias (bool): If ``True``, the argument of ``b`` is ignored
                in spite of whether it's given or not.
        """
        out_size, in_size = W.shape
        if b is not None:
            if out_size != b.size:
                raise ValueError('`out_size` does not match the size of `b`')
        link = cls(
            in_size, out_size, nobias,
            initialW=variable.as_array(W), initial_bias=variable.as_array(b))
        return link 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:linear.py

示例8: forward

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def forward(
            self,
            x: variable.Variable,
            n_batch_axes: int = 1
    ) -> variable.Variable:
        """Applies the linear layer.

        Args:
            x (~chainer.Variable): Batch of input vectors.
            n_batch_axes (int): The number of batch axes. The default is 1. The
                input variable is reshaped into
                (:math:`{\\rm n\\_batch\\_axes} + 1`)-dimensional tensor.
                This should be greater than 0.

        Returns:
            ~chainer.Variable: Output of the linear layer.

        """
        if self.W.array is None:
            in_size = utils.size_of_shape(x.shape[n_batch_axes:])
            self._initialize_params(in_size)
        return linear.linear(x, self.W, self.b, n_batch_axes=n_batch_axes) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:linear.py

示例9: _process

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def _process(self, function, in_data, out_grad=None):
        self._print('function\t{}'.format(function.label))
        self._print('input data')
        for d in in_data:
            if d is None:
                # Some inputs can be removed with `retain_grad`.
                self._print('(removed)')
                continue
            self._print(variable.Variable(d).debug_print())
        if out_grad is not None:
            self._print('output gradient')
            for d in out_grad:
                if d is None:
                    v = variable.Variable()
                else:
                    xp = backend.get_array_module(d)
                    v = variable.Variable(xp.zeros_like(d, dtype=d.dtype))
                    v.grad = d
                self._print(v.debug_print())
        if self.flush and hasattr(self.file, 'flush'):
            self.file.flush() 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:debug_print.py

示例10: _convert_value_to_string

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def _convert_value_to_string(value):
    if isinstance(value, variable.Variable):
        value = value.data

    if numpy.isscalar(value):
        if value < 0:
            return '({})'.format(value)
        else:
            return str(value)

    array_types = chainer.get_array_types()
    if isinstance(value, array_types):
        return 'constant array'
    else:
        raise ValueError(
            'Value must be a Variable, scalar, {} or {}. Actual: {}'.format(
                ', '.join([str(at) for at in array_types[:-1]]),
                array_types[-1], type(value))) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:basic_math.py

示例11: __call__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def __call__(self, c, h, x):
        """Returns new cell state and updated output of LSTM.

        Args:
            c (~chainer.Variable): Cell states of LSTM units.
            h (~chainer.Variable): Output at the previous time step.
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where
                ``c_new`` represents new cell state, and ``h_new`` is updated
                output of LSTM units.

        """
        if self.upward.has_uninitialized_params:
            in_size = x.size // x.shape[0]
            with cuda.get_device_from_id(self._device_id):
                self.upward._initialize_params(in_size)
                self._initialize_params()

        lstm_in = self.upward_ln(self.upward(x))
        if h is not None:
            lstm_in += self.lateral_ln(self.lateral(h))
        if c is None:
            xp = self.xp
            with cuda.get_device_from_id(self._device_id):
                c = variable.Variable(
                    xp.zeros((x.shape[0], self.state_size), dtype=x.dtype),
                    volatile='auto')
        c_next, ungated_h, o_gate = lstm_with_ungated_output(c, lstm_in)
        h = o_gate * self.output_ln(ungated_h)
        return c_next, h 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:34,代碼來源:ln_lstm.py

示例12: __call__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def __call__(self, x, layers=['prob'], **kwargs):
        """__call__(self, x, layers=['prob'])

        Computes all the feature maps specified by ``layers``.

        .. warning::

           ``test`` argument is not supported anymore since v2.
           Instead, use ``chainer.using_config('train', train)``.
           See :func:`chainer.using_config`.

        Args:
            x (~chainer.Variable): Input variable.
            layers (list of str): The list of layer names you want to extract.

        Returns:
            Dictionary of ~chainer.Variable: A directory in which
            the key contains the layer name and the value contains
            the corresponding feature map variable.

        """

        argument.check_unexpected_kwargs(
            kwargs, test='test argument is not supported anymore. '
            'Use chainer.using_config')
        argument.assert_kwargs_empty(kwargs)

        h = x
        activations = {}
        target_layers = set(layers)
        for key, funcs in self.functions.items():
            if len(target_layers) == 0:
                break
            for func in funcs:
                h = func(h)
            if key in target_layers:
                activations[key] = h
                target_layers.remove(key)
        return activations 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:41,代碼來源:resnet_layer.py

示例13: predict

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Use no_backprop_mode to reduce memory consumption
        with function.no_backprop_mode():
            x = Variable(self.xp.asarray(x))
            y = self(x, layers=['prob'])['prob']
            if oversample:
                n = y.data.shape[0] // 10
                y_shape = y.data.shape[1:]
                y = reshape(y, (n, 10) + y_shape)
                y = sum(y, axis=1) / 10
        return y 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:32,代碼來源:resnet_layer.py

示例14: forward

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def forward(self, c, h, x):
        """Returns new cell state and updated output of LSTM.

        Args:
            c (~chainer.Variable): Cell states of LSTM units.
            h (~chainer.Variable): Output at the previous time step.
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where
            ``c_new`` represents new cell state, and ``h_new`` is updated
            output of LSTM units.

        """
        # EDIT(hamaji): No lazy initialization.
        # if self.upward.W.data is None:
        #     in_size = x.size // x.shape[0]
        #     with cuda.get_device_from_id(self._device_id):
        #         self.upward._initialize_params(in_size)
        #         self._initialize_params()

        lstm_in = self.upward(x)
        if h is not None:
            lstm_in += self.lateral(h)
        if c is None:
            # EDIT(hamaji): Use numpy and np.float32.
            # xp = self.xp
            # with cuda.get_device_from_id(self._device_id):
            #     c = variable.Variable(
            #         xp.zeros((x.shape[0], self.state_size), dtype=x.dtype))
            c = variable.Variable(
                self.xp.zeros((x.shape[0], self.state_size), dtype=self.xp.float32))
        # EDIT(hamaji): Use lstm_forward.
        return lstm_forward(c, lstm_in)
        # return lstm.lstm(c, lstm_in) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:37,代碼來源:StatelessLSTM.py

示例15: original

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Variable [as 別名]
def original(self, c, h, x):
        """Returns new cell state and updated output of LSTM.

        Args:
            c (~chainer.Variable): Cell states of LSTM units.
            h (~chainer.Variable): Output at the previous time step.
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where
            ``c_new`` represents new cell state, and ``h_new`` is updated
            output of LSTM units.

        """
        if self.upward.W.data is None:
            in_size = x.size // x.shape[0]
            with cuda.get_device_from_id(self._device_id):
                self.upward._initialize_params(in_size)
                self._initialize_params()

        lstm_in = self.upward(x)
        if h is not None:
            lstm_in += self.lateral(h)
        if c is None:
            xp = self.xp
            with cuda.get_device_from_id(self._device_id):
                c = variable.Variable(
                    xp.zeros((x.shape[0], self.state_size), dtype=x.dtype))
        return lstm.lstm(c, lstm_in) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:31,代碼來源:StatelessLSTM.py


注:本文中的chainer.variable.Variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。