當前位置: 首頁>>代碼示例>>Python>>正文


Python variable.Parameter方法代碼示例

本文整理匯總了Python中chainer.variable.Parameter方法的典型用法代碼示例。如果您正苦於以下問題:Python variable.Parameter方法的具體用法?Python variable.Parameter怎麽用?Python variable.Parameter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.variable的用法示例。


在下文中一共展示了variable.Parameter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, axis=1, W_shape=None, bias_term=False, bias_shape=None, initialW=None, initial_bias=None):
        super(Scale, self).__init__()
        self.axis = axis

        with self.init_scope():
            # Add W parameter and/or bias term.
            if W_shape is not None:
                if initialW is None:
                    initialW = 1
                W_initializer = initializers._get_initializer(initialW)
                self.W = variable.Parameter(W_initializer, W_shape)
                if bias_term:
                    self.bias = Bias(axis, W_shape, initial_bias)
            else:
                if bias_term:
                    if bias_shape is None:
                        raise ValueError(
                            'bias_shape should be given if W is not '
                            'learnt parameter and bias_term is True.')
                    self.bias = Bias(axis, W_shape, initial_bias) 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:22,代碼來源:scale.py

示例2: test_serialize

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def test_serialize(self):
        l1 = links.Linear(None, 1)
        l2 = links.Linear(None, 3)
        with l2.init_scope():
            l2.x = variable.Parameter(0, 2)
        s1 = chainer.Sequential(l1, l2)
        mocks = {'0': mock.MagicMock(), '1': mock.MagicMock()}
        serializer = mock.MagicMock()
        serializer.__getitem__.side_effect = lambda k: mocks[k]
        serializer.return_value = None
        mocks['0'].return_value = None
        mocks['1'].return_value = None
        s1.serialize(serializer)

        self.assertEqual(serializer.call_count, 0)
        self.assertEqual(serializer.__getitem__.call_count, 2)
        serializer.__getitem__.assert_any_call('0')
        serializer.__getitem__.assert_any_call('1')

        mocks['0'].assert_any_call('W', None)
        mocks['0'].assert_any_call('b', l1.b.data)
        mocks['1'].assert_any_call('W', None)
        mocks['1'].assert_any_call('b', l2.b.data)
        mocks['1'].assert_any_call('x', l2.x.data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:26,代碼來源:test_sequential.py

示例3: params

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def params(
            self,
            include_uninit: bool = True
    ) -> tp.Iterator['chainer.Parameter']:
        """Returns a generator of all parameters under the link hierarchy.

        Args:
            include_uninit (bool): If ``True``, it also generates uninitialized
                parameters.

        Returns:
            A generator object that generates all parameters.

        """
        d = self.__dict__  # type: tp.Dict[str, chainer.Parameter]
        for name in sorted(self._params):
            if include_uninit or d[name].data is not None:
                yield d[name] 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:link.py

示例4: namedparams

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def namedparams(
            self,
            include_uninit: bool = True
    ) -> tp.Iterator[tp.Tuple[str, 'chainer.Parameter']]:
        """Returns a generator of all (path, param) pairs under the hierarchy.

        Args:
            include_uninit (bool): If ``True``, it also generates uninitialized
                parameters.

        Returns:
            A generator object that generates all (path, parameter) pairs. The
            paths are relative from this link.

        """
        d = self.__dict__  # type: tp.Dict[str, chainer.Parameter]
        for name in sorted(self._params):
            if include_uninit or d[name].is_initialized:
                yield '/' + name, d[name] 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:link.py

示例5: serialize

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def serialize(self, serializer: 'chainer.AbstractSerializer') -> None:
        """Serializes the link object.

        Args:
            serializer (~chainer.AbstractSerializer): Serializer object.

        """
        d = self.__dict__  # type: tp.Dict[str, chainer.Parameter]
        for name in self._params:
            param = d[name]
            data = serializer(name, param.data)  # type: types.NdArray
            if param.data is None and data is not None:
                # Initialize the parameter here
                param.initialize(data.shape)
                with chainer.using_device(param.device):
                    param.data[...] = param.device.send(data)
        for name in self._persistent:
            d[name] = serializer(name, d[name]) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:link.py

示例6: count_params

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def count_params(self) -> int:
        """Counts the total number of parameters.

        This method counts the total number of scalar values included in all
        the :class:`~chainer.Parameter`\\ s held by this link and its
        descendants.

        If the link containts uninitialized parameters, this method raises a
        warning.

        Returns:
            The total size of parameters (int)

        """

        size = 0
        for name, param in self.namedparams():
            if param.array is None:
                warnings.warn(
                    'Parameter \'{}\' has not been initialized, so the '
                    'resulting count will not include the number of parameters'
                    ' in it.'.format(name))
                continue
            size += param.size
        return size 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:link.py

示例7: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, in_size, out_size, ratio=.5, nobias=False,
                 initialW=None, initial_bias=None):
        super(SimplifiedDropconnect, self).__init__()

        self.out_size = out_size
        self.ratio = ratio

        if initialW is None:
            initialW = initializers.HeNormal(1. / numpy.sqrt(2))

        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)
            if in_size is not None:
                self._initialize_params(in_size)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = initializers.Constant(0)
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, out_size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:25,代碼來源:simplified_dropconnect.py

示例8: forward

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def forward(self, x):
        """Applies the convolution layer.

        Args:
            x (~chainer.Variable): Input image.

        Returns:
            ~chainer.Variable: Output of the convolution.

        """
        x = chainer.as_variable(x)
        assert x.layout == self.x_layout
        # self.W can be a Variable instead of Parameter: #8462
        # TODO(niboshi): Use Parameter.is_initialized.
        if self.W.raw_array is None:
            _, c, _, _ = memory_layouts.get_semantic_shape(
                x, assumed_layout=self.x_layout)
            self._initialize_params(c)
        return convolution_2d.convolution_2d(
            x, self.W, self.b, self.stride, self.pad, dilate=self.dilate,
            groups=self.groups, cudnn_fast=self.cudnn_fast) 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:convolution_2d.py

示例9: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, in_channels, out_channels, in_size=None, ksize=None,
                 stride=1, nobias=False, initialW=None, initial_bias=None,
                 **kwargs):
        super(LocalConvolution2D, self).__init__()
        self.ksize = ksize
        self.stride = _pair(stride)
        self.nobias = nobias
        self.out_channels = out_channels
        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer)

            if in_channels is not None and in_size is not None:
                self._initialize_params(in_channels, _pair(in_size)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:local_convolution_2d.py

示例10: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, groups, size=None, eps=1e-5, initial_gamma=None,
                 initial_beta=None):
        super(GroupNormalization, self).__init__()
        if initial_gamma is None:
            initial_gamma = 1
        if initial_beta is None:
            initial_beta = 0

        highprec_dtype = chainer.get_dtype(
            None, map_mixed16=numpy.float32)

        with self.init_scope():
            self.groups = groups
            gamma_initializer = \
                initializers._get_initializer(initial_gamma)
            gamma_initializer.dtype = highprec_dtype
            beta_initializer = \
                initializers._get_initializer(initial_beta)
            beta_initializer.dtype = highprec_dtype
            self.gamma = variable.Parameter(gamma_initializer)
            self.beta = variable.Parameter(beta_initializer)
            self.eps = eps

        if size is not None:
            self._initialize_params(size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:group_normalization.py

示例11: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, n_label):
        super(My_CRF, self).__init__(n_label)
        with self.init_scope():
            '''
            [Initialization]
            '''
            # Generate random values for transition matrix.
            # The shape of transition matrix is (n_label+2, n_label+2).
            # "2" means the extra added labels, START and END. (see 3.2)
            drange = np.sqrt(6. / (np.sum((n_label + 2, n_label + 2))))
            value = drange * np.random.uniform(low=-1.0, high=1.0, size=(n_label + 2, n_label + 2))
            transitions = np.array(value, dtype=np.float32)
            self.cost = variable.Parameter(transitions)

            # The number of unique labels in training data set (e.g B-Person, I-Person, O)
            self.n_label = n_label

            # The small value will fill the expanded emission score matrix as described in 3.2
            self.small = -1000 
開發者ID:createmomo,項目名稱:CRF-Layer-on-the-Top-of-BiLSTM,代碼行數:21,代碼來源:MyCRFLayer.py

示例12: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, inp = 256, mid = 128, sz = 3):
        super(ConvLSTM, self).__init__(
            Wxi = L.Convolution2D(inp, mid, sz, pad = sz//2),
            Whi = L.Convolution2D(mid, mid, sz, pad = sz//2, nobias = True),
            Wxf = L.Convolution2D(inp, mid, sz, pad = sz//2),
            Whf = L.Convolution2D(mid, mid, sz, pad = sz//2, nobias = True),
            Wxc = L.Convolution2D(inp, mid, sz, pad = sz//2),
            Whc = L.Convolution2D(mid, mid, sz, pad = sz//2, nobias = True),
            Wxo = L.Convolution2D(inp, mid, sz, pad = sz//2),
            Who = L.Convolution2D(mid, mid, sz, pad = sz//2, nobias = True)
        )

        self.inp = inp
        self.mid = mid
        
        self.pc = None
        self.ph = None

        with self.init_scope():
            Wci_initializer = initializers.Zero()
            self.Wci = variable.Parameter(Wci_initializer)
            Wcf_initializer = initializers.Zero()
            self.Wcf = variable.Parameter(Wcf_initializer)
            Wco_initializer = initializers.Zero()
            self.Wco = variable.Parameter(Wco_initializer) 
開發者ID:joisino,項目名稱:ConvLSTM,代碼行數:27,代碼來源:network.py

示例13: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, ndim, in_channels, out_channels, ksize, stride=1, pad=0,
                 nobias=False, initialW=None, initial_bias=None,
                 cover_all=False, use_gamma=False, Ip=1, factor=None):
        super(SNConvolutionND, self).__init__()
        ksize = conv_nd.as_tuple(ksize, ndim)
        self.stride = stride
        self.pad = pad
        self.cover_all = cover_all
        self.use_gamma = use_gamma
        self.Ip = Ip
        self.u = np.random.normal(size=(1, out_channels)).astype(dtype="f")
        self.register_persistent('u')
        self.factor = factor
        with self.init_scope():
            W_shape = (out_channels, in_channels) + ksize
            self.W = variable.Parameter(
                initializers._get_initializer(initialW), W_shape)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = 0
                initial_bias = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(initial_bias, out_channels)

            if self.use_gamma:
                W_mat = self.W.data.reshape(self.W.shape[0], -1)
                _, s, _ = np.linalg.svd(W_mat)
                self.gamma = variable.Parameter(s[0], (1,) * len(self.W.shape)) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:32,代碼來源:sn_convolution_nd.py

示例14: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, axis=1, shape=None, initial_bias=None):
        super(Bias, self).__init__()

        # Add b parameter if given.
        if shape is not None:
            with self.init_scope():
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, shape)

        self.axis = axis 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:14,代碼來源:bias.py

示例15: __init__

# 需要導入模塊: from chainer import variable [as 別名]
# 或者: from chainer.variable import Parameter [as 別名]
def __init__(self, size, comm, decay=0.9, eps=2e-5, dtype=None,
                 use_gamma=True, use_beta=True,
                 initial_gamma=None, initial_beta=None,
                 communication_backend='auto'):
        chainer.utils.experimental(
            'chainermn.links.MultiNodeBatchNormalization')

        super(MultiNodeBatchNormalization, self).__init__()
        self._highprec_dtype = chainer.get_dtype(
            dtype, map_mixed16=numpy.float32)
        self.comm = comm
        self.avg_mean = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_mean')
        self.avg_var = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_var')
        self.N = 0
        self.register_persistent('N')
        self.decay = decay
        self.eps = eps

        self._communication_backend = \
            chainermn_batch_normalization.get_communication_backend(
                comm, communication_backend)

        with self.init_scope():
            if use_gamma:
                if initial_gamma is None:
                    initial_gamma = 1
                initial_gamma = initializers._get_initializer(initial_gamma)
                initial_gamma.dtype = self._highprec_dtype
                self.gamma = variable.Parameter(initial_gamma, size)
            if use_beta:
                if initial_beta is None:
                    initial_beta = 0
                initial_beta = initializers._get_initializer(initial_beta)
                initial_beta.dtype = self._highprec_dtype
                self.beta = variable.Parameter(initial_beta, size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:39,代碼來源:batch_normalization.py


注:本文中的chainer.variable.Parameter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。