當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.utils方法代碼示例

本文整理匯總了Python中chainer.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.utils方法的具體用法?Python chainer.utils怎麽用?Python chainer.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.utils方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def forward(self, inputs):
        logit, x = inputs
        self.retain_inputs((0, 1))
        xp = backend.get_array_module(x)
        y = logit * (x - 1) - xp.log(xp.exp(-logit) + 1)
        y = utils.force_array(y)

        # extreme logit
        logit_isinf = xp.isinf(logit)
        self.logit_ispinf = xp.bitwise_and(logit_isinf, logit > 0)
        self.logit_isminf = xp.bitwise_and(logit_isinf, logit <= 0)
        with numpy.errstate(divide='ignore', invalid='raise'):
            y = xp.where(self.logit_ispinf, xp.log(x), y)
            y = xp.where(self.logit_isminf, xp.log(1 - x), y)

        if self.binary_check:
            self.invalid = utils.force_array(xp.bitwise_and(x != 0, x != 1))
            y[self.invalid] = -xp.inf

        return utils.force_array(y, logit.dtype), 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:bernoulli.py

示例2: forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def forward(self, xs):
        self.len = len(xs)
        if len(xs) == 1:
            return xs
        if (intel64.should_use_ideep('>=auto')
                and intel64.inputs_all_ready(xs)
                and all(x.shape == xs[0].shape for x in xs[1:])):
            y = intel64.ideep.multi_add(xs)
        else:
            # The output should be a new array. Add the first 2 arrays
            # and get the result y. Then add the rest arrays to y.
            y = xs[0] + xs[1]
            for x in xs[2:]:
                if x.shape == y.shape:
                    y += x
                else:
                    y = x + y

        return utils.force_array(y), 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:basic_math.py

示例3: forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def forward(self, x):
        self.retain_outputs((0,))
        xp = cuda.get_array_module(*x)
        return utils.force_array(xp.sqrt(x[0], dtype=x[0].dtype)), 
開發者ID:joisino,項目名稱:chainer-PGGAN,代碼行數:6,代碼來源:functions.py

示例4: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def __init__(self, size, comm, decay=0.9, eps=2e-5, dtype=None,
                 use_gamma=True, use_beta=True,
                 initial_gamma=None, initial_beta=None,
                 communication_backend='auto'):
        chainer.utils.experimental(
            'chainermn.links.MultiNodeBatchNormalization')

        super(MultiNodeBatchNormalization, self).__init__()
        self._highprec_dtype = chainer.get_dtype(
            dtype, map_mixed16=numpy.float32)
        self.comm = comm
        self.avg_mean = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_mean')
        self.avg_var = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_var')
        self.N = 0
        self.register_persistent('N')
        self.decay = decay
        self.eps = eps

        self._communication_backend = \
            chainermn_batch_normalization.get_communication_backend(
                comm, communication_backend)

        with self.init_scope():
            if use_gamma:
                if initial_gamma is None:
                    initial_gamma = 1
                initial_gamma = initializers._get_initializer(initial_gamma)
                initial_gamma.dtype = self._highprec_dtype
                self.gamma = variable.Parameter(initial_gamma, size)
            if use_beta:
                if initial_beta is None:
                    initial_beta = 0
                initial_beta = initializers._get_initializer(initial_beta)
                initial_beta.dtype = self._highprec_dtype
                self.beta = variable.Parameter(initial_beta, size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:39,代碼來源:batch_normalization.py

示例5: allgather

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def allgather(self, x):
        chainer.utils.experimental(
            'chainermn.communicators.MpiCommunicatorBase.allgather')

        msgtype = _MessageType(x)
        _check_dtype('allgather', msgtype)

        msgtypes = self.mpi_comm.allgather(msgtype)
        _check_dtypes_are_same(msgtypes)

        # Type check.
        for msgtype in msgtypes:
            if msgtype.is_tuple:
                raise TypeError('allgather cannot handle tuple data')

            assert len(msgtype.shapes) == 1

        # Collective communication.
        xp = chainer.backend.get_array_module(x)
        shapes = [msgtype.shapes[0] for msgtype in msgtypes]
        sbuf = _memory_utility.array_to_buffer_object(
            x, _get_mpi_type(msgtype))
        rlens = [chainer.utils.size_of_shape(s) for s in shapes]
        rbuf = xp.empty([sum(rlens)], dtype=msgtype.dtype)
        if xp is not numpy:
            chainer.cuda.Stream.null.synchronize()
        self.mpi_comm.Allgatherv(
            sbuf,
            [_memory_utility.get_device_memory_pointer(rbuf),
             (rlens, _cnt_to_dsp(rlens)), _get_mpi_type(msgtype)])
        ys = [rbuf[i:i + l].reshape(s)
              for i, l, s in zip(_cnt_to_dsp(rlens), rlens, shapes)]

        return tuple(ys) 
開發者ID:chainer,項目名稱:chainer,代碼行數:36,代碼來源:mpi_communicator_base.py

示例6: __init__

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def __init__(self, comm, peer_rank, peer_tag):
        chainer.utils.experimental('chainermn.functions.Send')
        self.comm = comm
        self.peer_rank = peer_rank
        self.peer_tag = peer_tag 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:point_to_point_communication.py

示例7: setup_chainerx

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def setup_chainerx(self, device_name='native:0'):
        self._setup(chainer.get_device(device_name))
        self.f.forward = mock.MagicMock(side_effect=lambda inputs: (
            utils.force_array(inputs[0] * inputs[1]),
            utils.force_array(inputs[0] + inputs[1]))) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_function_node.py

示例8: test_apply_single_return_value_chainerx_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def test_apply_single_return_value_chainerx_gpu(self):
        self.setup_chainerx('cuda:0')
        self.f.forward.side_effect = lambda inputs: (
            utils.force_array(inputs[0] * inputs[1]),)
        self.check_apply_single_return_value_chainerx() 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_function_node.py

示例9: check_SPDN_forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def check_SPDN_forward(self, a_data, b_data, atol=1e-4, rtol=1e-5):
        sp_a = utils.to_coo(a_data, requires_grad=True)
        b = chainer.Variable(b_data)
        c = F.sparse_matmul(sp_a, b, transa=self.transa, transb=self.transb)
        testing.assert_allclose(self.forward_answer, c.data, atol, rtol) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_sparse_matmul.py

示例10: check_SPDN_backward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def check_SPDN_backward(self, a_data, b_data, c_grad, atol, rtol):
        sp_a = utils.to_coo(a_data)
        func = F.math.sparse_matmul.CooMatMul(
            sp_a.row, sp_a.col, sp_a.shape, sp_a.order,
            transa=self.transa, transb=self.transb, transc=False)

        def op(a, b):
            return func.apply((a, b))[0]
        gradient_check.check_backward(
            op, (sp_a.data.data, b_data), c_grad, atol=atol, rtol=rtol,
            dtype=numpy.float32) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_sparse_matmul.py

示例11: check_DNSP_forward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def check_DNSP_forward(self, a_data, b_data, atol=1e-4, rtol=1e-5):
        a = chainer.Variable(a_data)
        sp_b = utils.to_coo(b_data, requires_grad=True)
        c = F.sparse_matmul(a, sp_b, transa=self.transa, transb=self.transb)
        testing.assert_allclose(self.forward_answer, c.data, atol, rtol) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_sparse_matmul.py

示例12: check_DNSP_backward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def check_DNSP_backward(self, a_data, b_data, c_grad, atol, rtol):
        sp_b = utils.to_coo(b_data)
        func = F.math.sparse_matmul.CooMatMul(
            sp_b.row, sp_b.col, sp_b.shape, sp_b.order,
            transa=not self.transb, transb=not self.transa, transc=True)

        def op(b, a):
            return func.apply((b, a))[0]
        gradient_check.check_backward(
            op, (sp_b.data.data, a_data), c_grad, atol=atol, rtol=rtol,
            dtype=numpy.float32) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_sparse_matmul.py

示例13: check_DNSP_double_backward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def check_DNSP_double_backward(
            self, a_data, b_data, c_grad, a_grad_grad, b_grad_grad,
            atol, rtol):
        sp_b = utils.to_coo(b_data)
        sp_ggb = utils.to_coo(b_grad_grad)
        func = F.math.sparse_matmul.CooMatMul(
            sp_b.row, sp_b.col, sp_b.shape, sp_b.order,
            transa=not self.transb, transb=not self.transa, transc=True)

        def op(b, a):
            return func.apply((b, a))[0]
        gradient_check.check_double_backward(
            op, (sp_b.data.data, a_data),
            c_grad, (sp_ggb.data.data, a_grad_grad),
            atol=atol, rtol=rtol, dtype=numpy.float32) 
開發者ID:chainer,項目名稱:chainer,代碼行數:17,代碼來源:test_sparse_matmul.py

示例14: test_invalid_ndim

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def test_invalid_ndim(self):
        a = _setup_tensor(.5, 1, (2, 3, 3), numpy.float32, .75)
        b = _setup_tensor(.5, 1, (3, 3), numpy.float32, .75)
        sp_a = utils.to_coo(a)
        sp_b = utils.to_coo(b)
        with self.assertRaises(type_check.InvalidType):
            F.sparse_matmul(sp_a, b, self.transa, self.transb)
        with self.assertRaises(type_check.InvalidType):
            F.sparse_matmul(a, sp_b, self.transa, self.transb) 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:test_sparse_matmul.py

示例15: test_invalid_nbatch

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import utils [as 別名]
def test_invalid_nbatch(self):
        a = _setup_tensor(.5, 1, (2, 3, 3), numpy.float32, .75)
        b = _setup_tensor(.5, 1, (3, 3, 3), numpy.float32, .75)
        sp_a = utils.to_coo(a)
        sp_b = utils.to_coo(b)
        with self.assertRaises(type_check.InvalidType):
            F.sparse_matmul(sp_a, b, self.transa, self.transb)
        with self.assertRaises(type_check.InvalidType):
            F.sparse_matmul(a, sp_b, self.transa, self.transb) 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:test_sparse_matmul.py


注:本文中的chainer.utils方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。