當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.force_array方法代碼示例

本文整理匯總了Python中chainer.utils.force_array方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.force_array方法的具體用法?Python utils.force_array怎麽用?Python utils.force_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.utils的用法示例。


在下文中一共展示了utils.force_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp_configure

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def setUp_configure(self):
        from scipy import stats
        self.dist = distributions.Gamma
        self.scipy_dist = stats.gamma

        self.test_targets = set(
            ['batch_shape', 'entropy', 'event_shape', 'log_prob', 'mean',
             'sample', 'support', 'variance'])

        k = utils.force_array(
            numpy.random.uniform(0, 5, self.shape).astype(numpy.float32))
        theta = utils.force_array(
            numpy.random.uniform(0, 5, self.shape).astype(numpy.float32))
        self.params = {'k': k, 'theta': theta}
        self.scipy_params = {'a': k, 'scale': theta}

        self.support = 'positive' 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_gamma.py

示例2: setUp_configure

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def setUp_configure(self):
        from scipy import stats
        self.dist = distributions.Normal
        self.scipy_dist = stats.norm

        self.test_targets = set([
            'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_cdf',
            'log_prob', 'log_survival', 'mean', 'prob', 'sample', 'stddev',
            'support', 'survival', 'variance'])

        loc = utils.force_array(
            numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
        if self.log_scale_option:
            log_scale = utils.force_array(
                numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
            scale = numpy.exp(log_scale)
            self.params = {'loc': loc, 'log_scale': log_scale}
            self.scipy_params = {'loc': loc, 'scale': scale}
        else:
            scale = utils.force_array(numpy.exp(
                numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32))
            self.params = {'loc': loc, 'scale': scale}
            self.scipy_params = {'loc': loc, 'scale': scale} 
開發者ID:chainer,項目名稱:chainer,代碼行數:25,代碼來源:test_normal.py

示例3: forward_expected

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward_expected(self, inputs):
        x, w = inputs
        if not self.use_weights:
            w = None
        y_expect = numpy.average(x, axis=self.axis, weights=w)
        if self.keepdims:
            # numpy.average does not support keepdims
            axis = self.axis
            if axis is None:
                axis = list(six.moves.range(x.ndim))
            elif isinstance(axis, int):
                axis = axis,
            shape = list(x.shape)
            for i in six.moves.range(len(shape)):
                if i in axis or i - len(shape) in axis:
                    shape[i] = 1
            y_expect = y_expect.reshape(shape)
        y_expect = utils.force_array(y_expect, dtype=self.dtype)
        return y_expect, 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_average.py

示例4: check_double_backward

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def check_double_backward(self, x_data, t_data, y_grad, gx_grad,
                              normalize=True, reduce='mean'):
        # Skip too large case. That requires a long time.
        if self.shape[0] == 65536:
            return

        if reduce == 'mean':
            y_grad = utils.force_array(y_grad.sum())

        def f(x, t):
            return chainer.functions.sigmoid_cross_entropy(
                x, t, normalize=normalize, reduce=reduce)

        gradient_check.check_double_backward(
            f, (x_data, t_data), y_grad, (gx_grad,),
            **self.check_double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_sigmoid_cross_entropy.py

示例5: forward_expected

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward_expected(self, inputs):
        x, t = inputs
        count = 0
        correct = 0
        x_flatten = x.ravel()
        t_flatten = t.ravel()
        for i in six.moves.range(t_flatten.size):
            if t_flatten[i] == -1:
                continue
            pred = int(x_flatten[i] >= 0)
            if pred == t_flatten[i]:
                correct += 1
            count += 1
        expected = float(correct) / count
        expected = force_array(expected, self.dtype)
        return expected, 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_binary_accuracy.py

示例6: forward

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward(self, inputs):
        logit, x = inputs
        self.retain_inputs((0, 1))
        xp = backend.get_array_module(x)
        y = logit * (x - 1) - xp.log(xp.exp(-logit) + 1)
        y = utils.force_array(y)

        # extreme logit
        logit_isinf = xp.isinf(logit)
        self.logit_ispinf = xp.bitwise_and(logit_isinf, logit > 0)
        self.logit_isminf = xp.bitwise_and(logit_isinf, logit <= 0)
        with numpy.errstate(divide='ignore', invalid='raise'):
            y = xp.where(self.logit_ispinf, xp.log(x), y)
            y = xp.where(self.logit_isminf, xp.log(1 - x), y)

        if self.binary_check:
            self.invalid = utils.force_array(xp.bitwise_and(x != 0, x != 1))
            y[self.invalid] = -xp.inf

        return utils.force_array(y, logit.dtype), 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:bernoulli.py

示例7: floor

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def floor(x):
    """Elementwise floor function.

    .. math::
       y_i = \\lfloor x_i \\rfloor

    Args:
        x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable.

    Returns:
        ~chainer.Variable: Output variable.
    """
    if isinstance(x, chainer.variable.Variable):
        x = x.array
    xp = backend.get_array_module(x)
    return chainer.as_variable(utils.force_array(xp.floor(x), x.dtype)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:floor.py

示例8: forward_cpu

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward_cpu(self, inputs):
        y = sum(w * x for w, x in zip(self.weights, inputs))
        return utils.force_array(y), 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:weighted_sum_arrays.py

示例9: forward_cpu

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward_cpu(self, inputs):
        y = sum(inputs)
        return utils.force_array(y), 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:5,代碼來源:sum_arrays.py

示例10: forward

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward(self, inputs):
        self.retain_inputs((0,))
        x, = inputs
        xp = cuda.get_array_module(x)
        y = xp.arctanh(x)
        return utils.force_array(y, dtype=x.dtype), 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:8,代碼來源:arctanh.py

示例11: forward

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def forward(self, x):
        self.retain_outputs((0,))
        xp = cuda.get_array_module(*x)
        return utils.force_array(xp.sqrt(x[0], dtype=x[0].dtype)), 
開發者ID:joisino,項目名稱:chainer-PGGAN,代碼行數:6,代碼來源:functions.py

示例12: setup_chainerx

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def setup_chainerx(self, device_name='native:0'):
        self._setup(chainer.get_device(device_name))
        self.f.forward = mock.MagicMock(side_effect=lambda inputs: (
            utils.force_array(inputs[0] * inputs[1]),
            utils.force_array(inputs[0] + inputs[1]))) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_function_node.py

示例13: test_apply_single_return_value_chainerx_cpu

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def test_apply_single_return_value_chainerx_cpu(self):
        self.setup_chainerx()
        self.f.forward.side_effect = lambda inputs: (
            utils.force_array(inputs[0] * inputs[1]),)
        self.check_apply_single_return_value_chainerx() 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_function_node.py

示例14: test_apply_single_return_value_chainerx_gpu

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def test_apply_single_return_value_chainerx_gpu(self):
        self.setup_chainerx('cuda:0')
        self.f.forward.side_effect = lambda inputs: (
            utils.force_array(inputs[0] * inputs[1]),)
        self.check_apply_single_return_value_chainerx() 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_function_node.py

示例15: setUp_configure

# 需要導入模塊: from chainer import utils [as 別名]
# 或者: from chainer.utils import force_array [as 別名]
def setUp_configure(self):
        from scipy import stats
        self.dist = distributions.Cauchy
        self.scipy_dist = stats.cauchy

        self.test_targets = set(['batch_shape', 'cdf', 'entropy',
                                 'event_shape', 'icdf', 'log_prob',
                                 'support'])

        loc = utils.force_array(
            numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
        scale = utils.force_array(numpy.exp(
            numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32))
        self.params = {'loc': loc, 'scale': scale}
        self.scipy_params = {'loc': loc, 'scale': scale} 
開發者ID:chainer,項目名稱:chainer,代碼行數:17,代碼來源:test_cauchy.py


注:本文中的chainer.utils.force_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。