本文整理匯總了Python中chainer.training方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.training方法的具體用法?Python chainer.training怎麽用?Python chainer.training使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.training方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def __call__(self, trainer):
duration_epoch = time.time() - self.time_epoch
epoch = trainer.updater.epoch
loss = trainer.observation["main/loss"].data
logger.info("epoch: %s, duration: %ds, loss: %.6g.",
epoch, duration_epoch, loss)
# get rnn state
model = trainer.updater.get_optimizer("main").target
state = model.predictor.get_state()
# generate text
seed = generate_seed(self.text)
generate_text(model, seed)
# set rnn back to training state
model.predictor.set_state(state)
# reset time
self.time_epoch = time.time()
示例2: create_trainer
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def create_trainer(args, model):
# Setup an optimizer
# optimizer = chainer.optimizers.Adam()
optimizer = chainer.optimizers.SGD()
optimizer.setup(model)
# Load the MNIST dataset
train, test = chainer.datasets.get_mnist()
train_iter = MyIterator(train, args.batchsize, shuffle=False)
test_iter = MyIterator(test, args.batchsize, repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
return trainer
示例3: get_model
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def get_model(args, loss_func, vocab, vocab_ngram_tokens, current_utils=utils.word):
model = None
if args.subword == 'none':
if args.model == 'skipgram':
model = current_utils.SkipGram(vocab.cnt_words, args.dimensions, loss_func)
if args.model == 'cbow':
# todo only skipgram supported
model = current_utils.ContinuousBoW(vocab.cnt_words, args.dimensions, loss_func)
else:
if args.model == 'skipgram':
model = utils.subword.SkipGram(args.subword, vocab, vocab_ngram_tokens, args.dimensions, loss_func, )
if model is None:
raise Exception('Unknown model and word/subword type: {} "and" {}'.format(args.model, args.subword))
return model
#@training.make_extension(trigger=(1, 'epoch'))
#def dump_embs(trainer):
# print("dumping embeddings")
示例4: add_default_arguments
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def add_default_arguments(parser):
parser.add_argument("log_dir", help='directory where generated models and logs shall be stored')
parser.add_argument('-b', '--batch-size', dest='batch_size', type=int, required=True,
help="Number of images per training batch")
parser.add_argument('-g', '--gpus', type=int, nargs="*", default=[], help="Ids of GPU to use [default: (use cpu)]")
parser.add_argument('-e', '--epochs', type=int, default=20, help="Number of epochs to train [default: 20]")
parser.add_argument('-r', '--resume', help="path to previously saved state of trained model from which training shall resume")
parser.add_argument('-si', '--snapshot-interval', dest='snapshot_interval', type=int, default=20000,
help="number of iterations after which a snapshot shall be taken [default: 20000]")
parser.add_argument('-ln', '--log-name', dest='log_name', default='training', help="name of the log folder")
parser.add_argument('-lr', '--learning-rate', dest='learning_rate', type=float, default=0.01,
help="initial learning rate [default: 0.01]")
parser.add_argument('-li', '--log-interval', dest='log_interval', type=int, default=100,
help="number of iterations after which an update shall be logged [default: 100]")
parser.add_argument('--lr-step', dest='learning_rate_step_size', type=float, default=0.1,
help="Step size for decreasing learning rate [default: 0.1]")
parser.add_argument('-t', '--test-interval', dest='test_interval', type=int, default=1000,
help="number of iterations after which testing should be performed [default: 1000]")
parser.add_argument('--test-iterations', dest='test_iterations', type=int, default=200,
help="number of test iterations [default: 200]")
parser.add_argument("-dr", "--dropout-ratio", dest='dropout_ratio', default=0.5, type=float,
help="ratio for dropout layers")
return parser
示例5: adadelta_eps_decay
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def adadelta_eps_decay(eps_decay):
"""Extension to perform adadelta eps decay.
Args:
eps_decay (float): Decay rate of eps.
Returns:
An extension function.
"""
@training.make_extension(trigger=(1, "epoch"))
def adadelta_eps_decay(trainer):
_adadelta_eps_decay(trainer, eps_decay)
return adadelta_eps_decay
示例6: adam_lr_decay
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def adam_lr_decay(eps_decay):
"""Extension to perform adam lr decay.
Args:
eps_decay (float): Decay rate of lr.
Returns:
An extension function.
"""
@training.make_extension(trigger=(1, "epoch"))
def adam_lr_decay(trainer):
_adam_lr_decay(trainer, eps_decay)
return adam_lr_decay
示例7: setup_updater
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def setup_updater(mode, gpus, train_iter, optimizer):
gpu0 = gpus[0]
if len(gpus) == 1:
# Single GPU or CPU
logger.info('Setup single updater (gpu: %d)', gpu0)
updater = training.StandardUpdater(train_iter, optimizer, device=gpu0,
converter=select_converter(mode))
else:
# Multiple GPUs
logger.info('Setup parallel updater (gpu: %s)', str(gpus))
devs = {'slave{}'.format(i): gpu for i, gpu in enumerate(gpus[1:])}
devs['main'] = gpu0
updater = training.updaters.MultiprocessParallelUpdater(
train_iter, optimizer, devices=devs,
converter=select_converter(mode))
return updater
示例8: test_chainer_pruning_extension
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def test_chainer_pruning_extension() -> None:
def objective(trial: optuna.trial.Trial) -> float:
model = L.Classifier(chainer.Sequential(L.Linear(None, 2)))
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train_iter = chainer.iterators.SerialIterator(FixedValueDataset(), 16)
updater = chainer.training.StandardUpdater(train_iter, optimizer)
trainer = chainer.training.Trainer(updater, (1, "epoch"))
trainer.extend(
optuna.integration.chainer.ChainerPruningExtension(trial, "main/loss", (1, "epoch"))
)
trainer.run(show_loop_exception_msg=False)
return 1.0
study = optuna.create_study(pruner=DeterministicPruner(True))
study.optimize(objective, n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.PRUNED
study = optuna.create_study(pruner=DeterministicPruner(False))
study.optimize(objective, n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
assert study.trials[0].value == 1.0
示例9: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def __init__(self, trial, observation_key, pruner_trigger):
# type: (optuna.trial.Trial, str, TriggerType) -> None
_imports.check()
self._trial = trial
self._observation_key = observation_key
self._pruner_trigger = chainer.training.get_trigger(pruner_trigger)
if not (
isinstance(self._pruner_trigger, triggers.IntervalTrigger)
or isinstance(self._pruner_trigger, triggers.ManualScheduleTrigger)
):
pruner_type = type(self._pruner_trigger)
raise TypeError(
"Invalid trigger class: " + str(pruner_type) + "\n"
"Pruner trigger is supposed to be an instance of "
"IntervalTrigger or ManualScheduleTrigger."
)
示例10: ae_reconstruction
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def ae_reconstruction(enc, dec, eval_folder, gpu, data_iter, batch_size=32, img_chan=3, img_size=64):
@chainer.training.make_extension()
def sample_reconstruction(trainer):
xp = enc.xp
batch = data_iter.next()
d_real = xp.zeros((batch_size, img_chan, img_size, img_size)).astype("f")
for i in range(batch_size):
d_real[i, :] = xp.asarray(batch[i])
x = Variable(d_real, volatile=True)
imgs = dec(enc(x, test=True), test=True)
save_images_grid(imgs, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".rec.jpg",
grid_w=batch_size//8, grid_h=8)
save_images_grid(d_real, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".real.jpg",
grid_w=batch_size//8, grid_h=8)
return sample_reconstruction
示例11: preview_convert
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def preview_convert(iterator_a, iterator_b, g_a, g_b, device, gla, dst):
@chainer.training.make_extension()
def make_preview(trainer):
with chainer.using_config('train', False):
with chainer.no_backprop_mode():
x_a = iterator_a.next()
x_a = convert.concat_examples(x_a, device)
x_a = chainer.Variable(x_a)
x_b = iterator_b.next()
x_b = convert.concat_examples(x_b, device)
x_b = chainer.Variable(x_b)
x_ab = g_a(x_a)
x_ba = g_b(x_b)
x_bab = g_a(x_ba)
x_aba = g_b(x_ab)
preview_dir = '{}/preview'.format(dst)
if not os.path.exists(preview_dir):
os.makedirs(preview_dir)
image_dir = '{}/image'.format(dst)
if not os.path.exists(image_dir):
os.makedirs(image_dir)
names = ['a', 'ab', 'aba', 'b', 'ba', 'bab']
images = [x_a, x_ab, x_aba, x_b, x_ba, x_bab]
for n, i in zip(names, images):
i = cp.asnumpy(i.data)[:,:,padding:-padding,:].reshape(1, -1, 128)
image.save(image_dir+'/{}{}.jpg'.format(trainer.updater.epoch,n), i)
w = np.concatenate([gla.inverse(_i) for _i in dataset.reverse(i)])
dataset.save(preview_dir+'/{}{}.wav'.format(trainer.updater.epoch,n), 16000, w)
return make_preview
示例12: sample_generate_light
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def sample_generate_light(gen, mapping, dst, rows=8, cols=8, z=None, seed=0, subdir='preview'):
@chainer.training.make_extension()
def make_image(trainer):
nonlocal rows, cols, z
if trainer.updater.stage > 15:
rows = min(rows, 2)
cols = min(cols, 2)
elif trainer.updater.stage > 13:
rows = min(rows, 3)
cols = min(cols, 3)
elif trainer.updater.stage > 11:
rows = min(rows, 4)
cols = min(cols, 4)
np.random.seed(seed)
n_images = rows * cols
xp = gen.xp
if z is None:
z = Variable(xp.asarray(mapping.make_hidden(n_images)))
else:
z = z[:n_images]
with chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
x = gen(mapping(z), stage=trainer.updater.stage)
x = chainer.cuda.to_cpu(x.data)
np.random.seed()
x = convert_batch_images(x, rows, cols)
preview_dir = '{}/{}'.format(dst, subdir)
if not os.path.exists(preview_dir):
os.makedirs(preview_dir)
preview_path = preview_dir + '/image_latest.png'
Image.fromarray(x).save(preview_path)
preview_path = preview_dir + '/image{:0>8}.png'.format(trainer.updater.iteration)
Image.fromarray(x).save(preview_path)
return make_image
示例13: parse_args
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', '-b', type=int, default=32,
help='Number of examples in each mini-batch')
parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '
'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',
help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--hidden_size', type=int, default=300,
help='Number of LSTM units in each layer')
parser.add_argument('--embed_size', type=int, default=300,
help='Size of embeddings')
parser.add_argument('--model', '-m', default='model.npz',
help='Model file name to serialize')
parser.add_argument('--glove', default='data/glove.6B.300d.txt',
help='Path to glove embedding file.')
args = parser.parse_args()
return args
示例14: main
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def main(model):
train = read_data(fold=BUZZER_TRAIN_FOLD)
valid = read_data(fold=BUZZER_DEV_FOLD)
print('# train data: {}'.format(len(train)))
print('# valid data: {}'.format(len(valid)))
train_iter = chainer.iterators.SerialIterator(train, 64)
valid_iter = chainer.iterators.SerialIterator(valid, 64, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
updater = training.updaters.StandardUpdater(train_iter, optimizer, converter=convert_seq, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out=model.model_dir)
trainer.extend(extensions.Evaluator(valid_iter, model, converter=convert_seq, device=0))
record_trigger = training.triggers.MaxValueTrigger('validation/main/accuracy', (1, 'epoch'))
trainer.extend(extensions.snapshot_object(model, 'buzzer.npz'), trigger=record_trigger)
trainer.extend(extensions.LogReport())
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
]))
if not os.path.isdir(model.model_dir):
os.mkdir(model.model_dir)
trainer.run()
示例15: parse_args
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import training [as 別名]
def parse_args(generators, discriminators, updaters):
parser = argparse.ArgumentParser(description='Semantic Segmentation using Adversarial Networks')
parser.add_argument('--generator', choices=generators.keys(), default='fcn32s',
help='Generator(segmentor) architecture')
parser.add_argument('--discriminator', choices=discriminators.keys(), default='largefov',
help='Discriminator architecture')
parser.add_argument('--updater', choices=updaters.keys(), default='gan',
help='Updater')
parser.add_argument('--initgen_path', default='pretrained_model/vgg16.npz',
help='Pretrained model of generator')
parser.add_argument('--initdis_path', default=None,
help='Pretrained model of discriminator')
parser.add_argument('--batchsize', '-b', type=int, default=1,
help='Number of images in each mini-batch')
parser.add_argument('--iteration', '-i', type=int, default=100000,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--out', '-o', default='snapshot',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--evaluate_interval', type=int, default=1000,
help='Interval of evaluation')
parser.add_argument('--snapshot_interval', type=int, default=10000,
help='Interval of snapshot')
parser.add_argument('--display_interval', type=int, default=10,
help='Interval of displaying log to console')
return parser.parse_args()