當前位置: 首頁>>代碼示例>>Python>>正文


Python extensions.PlotReport方法代碼示例

本文整理匯總了Python中chainer.training.extensions.PlotReport方法的典型用法代碼示例。如果您正苦於以下問題:Python extensions.PlotReport方法的具體用法?Python extensions.PlotReport怎麽用?Python extensions.PlotReport使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.training.extensions的用法示例。


在下文中一共展示了extensions.PlotReport方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def main():
    parser = argparse.ArgumentParser(description='Chainer example: MNIST')
    parser.add_argument('--batchsize', '-b', type=int, default=7,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch', '-e', type=int, default=20,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--frequency', '-f', type=int, default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu', '-g', type=int, default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out', '-o', default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume', '-r', default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--unit', '-u', type=int, default=1000,
                        help='Number of units')
    parser.add_argument('--noplot', dest='plot', action='store_false',
                        help='Disable PlotReport extension')
    parser.add_argument('--onnx', default='',
                        help='Export ONNX model')
    parser.add_argument('--model', '-m', default='model.npz',
                        help='Model file name to serialize')
    parser.add_argument('--timeout', type=int, default=0,
                        help='Enable timeout')
    parser.add_argument('--trace', default='',
                        help='Enable tracing')
    parser.add_argument('--run_training', action='store_true',
                        help='Run training')
    args = parser.parse_args()

    main_impl(args) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:33,代碼來源:gen_mnist_mlp.py

示例2: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def main():
    archs = {
        'alex': alex.Alex,
        'nin': nin.NIN,
        'resnet50': resnet50.ResNet50,
    }
    parser = argparse.ArgumentParser(
        description='Learning convnet from ILSVRC2012 dataset')
    parser.add_argument('--arch', '-a', choices=archs.keys(),
                        default='resnet50',
                        help='Convnet architecture')
    parser.add_argument('--train', default='',
                        help='Path to training image-label list file')
    parser.add_argument('--val', default='',
                        help='Path to validation image-label list file')
    parser.add_argument('--batchsize', '-B', type=int, default=32,
                        help='Learning minibatch size')
    parser.add_argument('--epoch', '-E', type=int, default=10,
                        help='Number of epochs to train')
    parser.add_argument('--frequency', '-f', type=int, default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--gpu', '-g', type=int, default=-1,
                        help='GPU ID (negative value indicates CPU')
    parser.add_argument('--initmodel',
                        help='Initialize the model from given file')
    parser.add_argument('--loaderjob', '-j', type=int,
                        help='Number of parallel data loading processes')
    parser.add_argument('--mean', '-m', default='mean.npy',
                        help='Mean file (computed by compute_mean.py)')
    parser.add_argument('--noplot', dest='plot', action='store_false',
                        help='Disable PlotReport extension')
    parser.add_argument('--resume', '-r', default='',
                        help='Initialize the trainer from given file')
    parser.add_argument('--out', '-o', default='result',
                        help='Output directory')
    parser.add_argument('--root', '-R', default='.',
                        help='Root directory path of image files')
    parser.add_argument('--val_batchsize', '-b', type=int, default=250,
                        help='Validation minibatch size')
    parser.add_argument('--test', action='store_true')
    parser.add_argument('--run_training', action='store_true',
                        help='Run training')
    parser.set_defaults(test=False)
    args = parser.parse_args()

    model_cls = archs[args.arch]
    main_impl(args, model_cls)

    # TODO(hamaji): Stop writing a file to scripts.
    with open('scripts/%s_stamp' % args.arch, 'w'): pass 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:52,代碼來源:gen_resnet50.py

示例3: run_training

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def run_training(args, model):
    trainer = create_trainer(args, model)

    # Dump a computational graph from 'loss' variable at the first iteration
    # The "main" refers to the target link of the "main" optimizer.
    trainer.extend(extensions.dump_graph('main/loss'))

    # Take a snapshot for each specified epoch
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport())

    # Save two plot images to the result dir
    if args.plot and extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(['main/loss', 'validation/main/loss'],
                                  'epoch', file_name='loss.png'))
        trainer.extend(
            extensions.PlotReport(
                ['main/accuracy', 'validation/main/accuracy'],
                'epoch', file_name='accuracy.png'))

    # Print selected entries of the log to stdout
    # Here "main" refers to the target link of the "main" optimizer again, and
    # "validation" refers to the default name of the Evaluator extension.
    # Entries other than 'epoch' are reported by the Classifier link, called by
    # either the updater or the evaluator.
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

    # Print a progress bar to stdout
    trainer.extend(extensions.ProgressBar())

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run() 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:44,代碼來源:gen_resnet50.py

示例4: train_main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def train_main(args):
    """
    trains model specfied in args.
    main method for train subcommand.
    """
    # load text
    with open(args.text_path) as f:
        text = f.read()
    logger.info("corpus length: %s.", len(text))

    # data iterator
    data_iter = DataIterator(text, args.batch_size, args.seq_len)

    # load or build model
    if args.restore:
        logger.info("restoring model.")
        load_path = args.checkpoint_path if args.restore is True else args.restore
        model = load_model(load_path)
    else:
        net = Network(vocab_size=VOCAB_SIZE,
                      embedding_size=args.embedding_size,
                      rnn_size=args.rnn_size,
                      num_layers=args.num_layers,
                      drop_rate=args.drop_rate)
        model = L.Classifier(net)

    # make checkpoint directory
    log_dir = make_dirs(args.checkpoint_path)
    with open("{}.json".format(args.checkpoint_path), "w") as f:
        json.dump(model.predictor.args, f, indent=2)
    chainer.serializers.save_npz(args.checkpoint_path, model)
    logger.info("model saved: %s.", args.checkpoint_path)

    # optimizer
    optimizer = chainer.optimizers.Adam(alpha=args.learning_rate)
    optimizer.setup(model)
    # clip gradient norm
    optimizer.add_hook(chainer.optimizer.GradientClipping(args.clip_norm))

    # trainer
    updater = BpttUpdater(data_iter, optimizer)
    trainer = chainer.training.Trainer(updater, (args.num_epochs, 'epoch'), out=log_dir)
    trainer.extend(extensions.snapshot_object(model, filename=os.path.basename(args.checkpoint_path)))
    trainer.extend(extensions.ProgressBar(update_interval=1))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PlotReport(y_keys=["main/loss"]))
    trainer.extend(LoggerExtension(text))

    # training start
    model.predictor.reset_state()
    logger.info("start of training.")
    time_train = time.time()
    trainer.run()

    # training end
    duration_train = time.time() - time_train
    logger.info("end of training, duration: %ds.", duration_train)
    # generate text
    seed = generate_seed(text)
    generate_text(model, seed, 1024, 3)
    return model 
開發者ID:yxtay,項目名稱:char-rnn-text-generation,代碼行數:63,代碼來源:chainer_model.py

示例5: get_trainer

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def get_trainer(optimizer, iter_train, iter_valid, iter_valid_raw,
                class_names, args):
    model = optimizer.target

    updater = chainer.training.StandardUpdater(
        iter_train, optimizer, device=args.gpu)

    trainer = chainer.training.Trainer(
        updater, (args.max_iteration, 'iteration'), out=args.out)

    trainer.extend(fcn.extensions.ParamsReport(args.__dict__))

    trainer.extend(extensions.ProgressBar(update_interval=5))

    trainer.extend(extensions.LogReport(
        trigger=(args.interval_print, 'iteration')))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 'elapsed_time',
         'main/loss', 'validation/main/miou']))

    def pred_func(x):
        model(x)
        return model.score

    trainer.extend(
        fcn.extensions.SemanticSegmentationVisReport(
            pred_func, iter_valid_raw,
            transform=fcn.datasets.transform_lsvrc2012_vgg16,
            class_names=class_names, device=args.gpu, shape=(4, 2)),
        trigger=(args.interval_eval, 'iteration'))

    trainer.extend(
        chainercv.extensions.SemanticSegmentationEvaluator(
            iter_valid, model, label_names=class_names),
        trigger=(args.interval_eval, 'iteration'))

    trainer.extend(extensions.snapshot_object(
        target=model, filename='model_best.npz'),
        trigger=chainer.training.triggers.MaxValueTrigger(
            key='validation/main/miou',
            trigger=(args.interval_eval, 'iteration')))

    assert extensions.PlotReport.available()
    trainer.extend(extensions.PlotReport(
        y_keys=['main/loss'], x_key='iteration',
        file_name='loss.png', trigger=(args.interval_print, 'iteration')))
    trainer.extend(extensions.PlotReport(
        y_keys=['validation/main/miou'], x_key='iteration',
        file_name='miou.png', trigger=(args.interval_print, 'iteration')))

    return trainer 
開發者ID:wkentaro,項目名稱:fcn,代碼行數:53,代碼來源:train_fcn32s.py

示例6: train_one_epoch

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def train_one_epoch(model, train_data, lr, gpu, batchsize, out):
    train_model = PixelwiseSoftmaxClassifier(model)
    if gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(gpu).use()
        train_model.to_gpu()  # Copy the model to the GPU
    log_trigger = (0.1, 'epoch')
    validation_trigger = (1, 'epoch')
    end_trigger = (1, 'epoch')

    train_data = TransformDataset(
        train_data, ('img', 'label_map'), SimpleDoesItTransform(model.mean))
    val = VOCSemanticSegmentationWithBboxDataset(
        split='val').slice[:, ['img', 'label_map']]

    # Iterator
    train_iter = iterators.MultiprocessIterator(train_data, batchsize)
    val_iter = iterators.MultiprocessIterator(
        val, 1, shuffle=False, repeat=False, shared_mem=100000000)

    # Optimizer
    optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9)
    optimizer.setup(train_model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0001))

    # Updater
    updater = training.updaters.StandardUpdater(
        train_iter, optimizer, device=gpu)

    # Trainer
    trainer = training.Trainer(updater, end_trigger, out=out)

    trainer.extend(extensions.LogReport(trigger=log_trigger))
    trainer.extend(extensions.observe_lr(), trigger=log_trigger)
    trainer.extend(extensions.dump_graph('main/loss'))

    if extensions.PlotReport.available():
        trainer.extend(extensions.PlotReport(
            ['main/loss'], x_key='iteration',
            file_name='loss.png'))
        trainer.extend(extensions.PlotReport(
            ['validation/main/miou'], x_key='iteration',
            file_name='miou.png'))

    trainer.extend(extensions.snapshot_object(
        model, filename='snapshot.npy'),
        trigger=end_trigger)
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 'elapsed_time', 'lr',
         'main/loss', 'validation/main/miou',
         'validation/main/mean_class_accuracy',
         'validation/main/pixel_accuracy']),
        trigger=log_trigger)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(
        SemanticSegmentationEvaluator(
            val_iter, model,
            voc_semantic_segmentation_label_names),
        trigger=validation_trigger)
    trainer.run() 
開發者ID:chainer,項目名稱:models,代碼行數:63,代碼來源:train.py

示例7: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def main():
    gpu, out = -1, "result"
    stepsize = 0.001
    batchsize, epoch = 10000, 10
    beta, gamma = 0., 1.

    data_id, prior = 0, .5
    n_p, n_n, n_u, n_t, n_vp, n_vn, n_vu = 100, 0, 10000, 100, 20, 20, 100
    data_name, x_p, x_n, x_u, y_u, x_t, y_t, x_vp, x_vn, x_vu, y_vu \
        = load_dataset(data_id, n_p, n_n, n_u, prior, n_t, n_vp=n_vp, n_vn=n_vn, n_vu=n_vu)

    x_p, x_n, x_u, x_t, x_vp, x_vn, x_vu = x_p.astype(np.float32), x_n.astype(np.float32), \
        x_u.astype(np.float32), x_t.astype(np.float32), x_vp.astype(np.float32), \
        x_vn.astype(np.float32), x_vu.astype(np.float32), 
    XYtrain = TupleDataset(np.r_[x_p, x_u], np.r_[np.ones(100), np.zeros(10000)].astype(np.int32))
    XYtest = TupleDataset(np.r_[x_vp, x_vu], np.r_[np.ones(20), np.zeros(100)].astype(np.int32))
    train_iter = chainer.iterators.SerialIterator(XYtrain, batchsize)
    test_iter = chainer.iterators.SerialIterator(XYtest, batchsize, repeat=False, shuffle=False)

    loss_type = lambda x: F.sigmoid(-x)
    nnpu_risk = PU_Risk(prior, loss=loss_type, nnPU=True, gamma=gamma, beta=beta)
    pu_acc = PU_Accuracy(prior)

    model = L.Classifier(MLP(), lossfun=nnpu_risk, accfun=pu_acc)
    if gpu >= 0:
        chainer.backends.cuda.get_device_from_id(gpu).use()
        model.to_gpu(gpu)

    optimizer = chainer.optimizers.Adam(alpha=stepsize)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(0.005))

    updater = chainer.training.StandardUpdater(train_iter, optimizer, device=gpu)
    trainer = chainer.training.Trainer(updater, (epoch, 'epoch'), out=out)
    trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
    trainer.extend(extensions.Evaluator(test_iter, model, device=gpu))
    trainer.extend(extensions.ProgressBar())
    trainer.extend(extensions.PrintReport(
                ['epoch', 'main/loss', 'validation/main/loss',
                 'main/accuracy', 'validation/main/accuracy', 
                 'elapsed_time']))
    key = 'validation/main/accuracy'
    model_name = 'model'
    trainer.extend(extensions.snapshot_object(model, model_name),
                   trigger=chainer.training.triggers.MaxValueTrigger(key))
    if extensions.PlotReport.available():
            trainer.extend(
                extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name=f'loss_curve.png'))
            trainer.extend(
                extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 
                                      'epoch', file_name=f'accuracy_curve.png'))


    trainer.run()

    yh = pred(model, x_t, batchsize, gpu)
    mr = prior*np.mean(yh[y_t == +1] <= 0) + (1-prior)*np.mean(yh[y_t == -1] >= 0)
    print("mr: {}".format(mr)) 
開發者ID:t-sakai-kure,項目名稱:pywsl,代碼行數:60,代碼來源:demo_nnpu_chainer.py

示例8: register_extensions

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def register_extensions(trainer, model, test_iter, args):
    if args.mode.startswith('seg'):
        # Max accuracy
        best_trigger = training.triggers.BestValueTrigger(
            'validation/main/accuracy', lambda a, b: a < b, (1, 'epoch'))
    elif args.mode.startswith('mat'):
        # Min loss
        best_trigger = training.triggers.BestValueTrigger(
            'validation/main/loss', lambda a, b: a > b, (1, 'epoch'))
    else:
        logger.error('Invalid training mode')

    # Segmentation extensions
    trainer.extend(
        custom_extensions.PortraitVisEvaluator(
            test_iter, model, device=args.gpus[0],
            converter=select_converter(args.mode),
            filename='vis_epoch={epoch}_idx={index}.jpg',
            mode=args.mode
        ), trigger=(1, 'epoch'))

    # Basic extensions
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.LogReport(trigger=(200, 'iteration')))
    trainer.extend(extensions.ProgressBar(update_interval=20))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy',
         'validation/main/accuracy', 'lr', 'elapsed_time']))
    trainer.extend(extensions.observe_lr(), trigger=(200, 'iteration'))

    # Snapshots
    trainer.extend(extensions.snapshot(
        filename='snapshot_epoch_{.updater.epoch}'
    ), trigger=(5, 'epoch'))
    trainer.extend(extensions.snapshot_object(
        model, filename='model_best'
    ), trigger=best_trigger)

    # ChainerUI extensions
    trainer.extend(chainerui.extensions.CommandsExtension())
    chainerui.utils.save_args(args, args.out)

    # Plotting extensions
    if extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(
                ['main/loss', 'validation/main/loss'],
                'epoch', file_name='loss.png'))
        trainer.extend(
            extensions.PlotReport(
                ['main/accuracy', 'validation/main/accuracy'],
                'epoch', file_name='accuracy.png')) 
開發者ID:takiyu,項目名稱:portrait_matting,代碼行數:54,代碼來源:train.py

示例9: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import PlotReport [as 別名]
def main(resume, gpu, load_path, data_path):
	dataset = Dataset(data_path)


	GenNetwork = MultiScaleGenerator(c.SCALE_FMS_G, c.SCALE_KERNEL_SIZES_G)
	DisNetwork = MultiScaleDiscriminator(c.SCALE_CONV_FMS_D, c.SCALE_KERNEL_SIZES_D, c.SCALE_FC_LAYER_SIZES_D)

	optimizers = {}
	optimizers["GeneratorNetwork"] = chainer.optimizers.SGD(c.LRATE_G)
	optimizers["DiscriminatorNetwork"] = chainer.optimizers.SGD(c.LRATE_D)

	iterator = chainer.iterators.SerialIterator(dataset, 1)
	params = {'LAM_ADV': 0.05, 'LAM_LP': 1, 'LAM_GDL': .1}
	updater = Updater(iterators=iterator, optimizers=optimizers,
	                  GeneratorNetwork=GenNetwork,
	                  DiscriminatorNetwork=DisNetwork,
	                  params=params,
	                  device=gpu
	                  )
	if gpu>=0:
		updater.GenNetwork.to_gpu()
		updater.DisNetwork.to_gpu()

	trainer = chainer.training.Trainer(updater, (500000, 'iteration'), out='result')
	trainer.extend(extensions.snapshot(filename='snapshot'), trigger=(1, 'iteration'))
	trainer.extend(extensions.snapshot_object(trainer.updater.GenNetwork, "GEN"))
	trainer.extend(saveGen)

	log_keys = ['epoch', 'iteration', 'GeneratorNetwork/L2Loss', 'GeneratorNetwork/GDL',
	            'DiscriminatorNetwork/DisLoss', 'GeneratorNetwork/CompositeGenLoss']
	print_keys = ['GeneratorNetwork/CompositeGenLoss','DiscriminatorNetwork/DisLoss']
	trainer.extend(extensions.LogReport(keys=log_keys, trigger=(10, 'iteration')))
	trainer.extend(extensions.PrintReport(print_keys), trigger=(10, 'iteration'))
	trainer.extend(extensions.PlotReport(['DiscriminatorNetwork/DisLoss'], 'iteration', (10, 'iteration'), file_name="DisLoss.png"))
	trainer.extend(extensions.PlotReport(['GeneratorNetwork/CompositeGenLoss'], 'iteration', (10, 'iteration'), file_name="GenLoss.png"))
	trainer.extend(extensions.PlotReport(['GeneratorNetwork/AdvLoss'], 'iteration', (10, 'iteration'), file_name="AdvGenLoss.png"))
	trainer.extend(extensions.PlotReport(['GeneratorNetwork/AdvLoss','DiscriminatorNetwork/DisLoss'], 'iteration', (10, 'iteration'), file_name="AdversarialLosses.png"))
	trainer.extend(extensions.PlotReport(['GeneratorNetwork/L2Loss'], 'iteration', (10, 'iteration'),file_name="L2Loss.png"))
	trainer.extend(extensions.PlotReport(['GeneratorNetwork/GDL'], 'iteration', (10, 'iteration'),file_name="GDL.png"))

	trainer.extend(extensions.ProgressBar(update_interval=10))
	if resume:
		# Resume from a snapshot
		chainer.serializers.load_npz(load_path, trainer)
	print(trainer.updater.__dict__)
	trainer.run() 
開發者ID:alokwhitewolf,項目名稱:Video-frame-prediction-by-multi-scale-GAN,代碼行數:48,代碼來源:train.py


注:本文中的chainer.training.extensions.PlotReport方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。