當前位置: 首頁>>代碼示例>>Python>>正文


Python extensions.Evaluator方法代碼示例

本文整理匯總了Python中chainer.training.extensions.Evaluator方法的典型用法代碼示例。如果您正苦於以下問題:Python extensions.Evaluator方法的具體用法?Python extensions.Evaluator怎麽用?Python extensions.Evaluator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.training.extensions的用法示例。


在下文中一共展示了extensions.Evaluator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_trainer

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def create_trainer(args, model):
    # Setup an optimizer
    # optimizer = chainer.optimizers.Adam()
    optimizer = chainer.optimizers.SGD()
    optimizer.setup(model)

    # Load the MNIST dataset
    train, test = chainer.datasets.get_mnist()

    train_iter = MyIterator(train, args.batchsize, shuffle=False)
    test_iter = MyIterator(test, args.batchsize, repeat=False, shuffle=False)

    # Set up a trainer
    updater = training.updaters.StandardUpdater(
        train_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
    return trainer 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:gen_mnist_mlp.py

示例2: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main(model):
    train = read_data(fold=BUZZER_TRAIN_FOLD)
    valid = read_data(fold=BUZZER_DEV_FOLD)
    print('# train data: {}'.format(len(train)))
    print('# valid data: {}'.format(len(valid)))

    train_iter = chainer.iterators.SerialIterator(train, 64)
    valid_iter = chainer.iterators.SerialIterator(valid, 64, repeat=False, shuffle=False)

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))

    updater = training.updaters.StandardUpdater(train_iter, optimizer, converter=convert_seq, device=0)
    trainer = training.Trainer(updater, (20, 'epoch'), out=model.model_dir)

    trainer.extend(extensions.Evaluator(valid_iter, model, converter=convert_seq, device=0))

    record_trigger = training.triggers.MaxValueTrigger('validation/main/accuracy', (1, 'epoch'))
    trainer.extend(extensions.snapshot_object(model, 'buzzer.npz'), trigger=record_trigger)

    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.ProgressBar())
    trainer.extend(extensions.PrintReport([
        'epoch', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
    ]))

    if not os.path.isdir(model.model_dir):
        os.mkdir(model.model_dir)

    trainer.run() 
開發者ID:Pinafore,項目名稱:qb,代碼行數:34,代碼來源:train.py

示例3: create_trainer

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def create_trainer(args, model):
    # Setup an optimizer
    #optimizer = chainer.optimizers.Adam()
    optimizer = chainer.optimizers.SGD()
    optimizer.setup(model)

    # Load the datasets and mean file
    mean = np.load(args.mean)

    train = PreprocessedDataset(args.train, args.root, mean, insize)
    val = PreprocessedDataset(args.val, args.root, mean, insize, False)

    # These iterators load the images with subprocesses running in parallel to
    # the training/validation.
    train_iter = MyIterator(
        train, args.batchsize, n_processes=args.loaderjob)
    val_iter = MyIterator(
        val, args.val_batchsize, repeat=False, n_processes=args.loaderjob)

    # Set up a trainer
    updater = training.updaters.StandardUpdater(
        train_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(extensions.Evaluator(val_iter, model, device=args.gpu))
    return trainer 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:29,代碼來源:gen_resnet50.py

示例4: get_example

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def get_example(self, i):
        # It reads the i-th image/label pair and return a preprocessed image.
        # It applies following preprocesses:
        #     - Cropping (random or center rectangular)
        #     - Random flip
        #     - Scaling to [0, 1] value
        crop_size = self.crop_size

        image, label = self.base[i]
        _, h, w = image.shape

        if self.random:
            # Randomly crop a region and flip the image
            top = random.randint(0, h - crop_size - 1)
            left = random.randint(0, w - crop_size - 1)
            if random.randint(0, 1):
                image = image[:, :, ::-1]
        else:
            # Crop the center
            top = (h - crop_size) // 2
            left = (w - crop_size) // 2
        bottom = top + crop_size
        right = left + crop_size

        image = image[:, top:bottom, left:right]
        image -= self.mean[:, top:bottom, left:right]
        image *= (1.0 / 255.0)  # Scale to [0, 1]
        return image, label


# chainermn.create_multi_node_evaluator can be also used with user customized
# evaluator classes that inherit chainer.training.extensions.Evaluator. 
開發者ID:chainer,項目名稱:chainer,代碼行數:34,代碼來源:train_imagenet.py

示例5: setUp

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def setUp(self):
        self.data = [
            numpy.random.uniform(-1, 1, (3, 4)).astype('f') for _ in range(2)]
        self.batches = [
            numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f')
            for _ in range(2)]

        self.iterator = DummyIterator(self.data)
        self.converter = DummyConverter(self.batches)
        self.target = DummyModel(self)
        self.evaluator = extensions.Evaluator(
            self.iterator, self.target, converter=self.converter)
        self.expect_mean = numpy.mean([numpy.sum(x) for x in self.batches]) 
開發者ID:chainer,項目名稱:chainer,代碼行數:15,代碼來源:test_evaluator.py

示例6: prepare

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare(self, data, batches, device):
        iterator = DummyIterator(data)
        converter = DummyConverter(batches)
        target = DummyModelTwoArgs(self)
        evaluator = extensions.Evaluator(
            iterator, target, converter=converter, device=device)
        return iterator, converter, target, evaluator 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_evaluator.py

示例7: test_user_warning

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def test_user_warning(self):
        dataset = numpy.ones((4, 6))
        iterator = self.iterator_class(dataset, 2, repeat=self.repeat)
        if self.repeat:
            with testing.assert_warns(UserWarning):
                extensions.Evaluator(iterator, {}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:8,代碼來源:test_evaluator.py

示例8: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
    # Parse the arguments.
    args = parse_arguments()

    if args.label:
        labels = args.label
    else:
        raise ValueError('No target label was specified.')

    # Dataset preparation.
    def postprocess_label(label_list):
        return numpy.asarray(label_list, dtype=numpy.float32)

    print('Preprocessing dataset...')
    preprocessor = preprocess_method_dict[args.method]()
    parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label,
                           labels=labels, smiles_col='SMILES')
    dataset = parser.parse(args.datafile)['dataset']

    test = dataset

    print('Predicting...')
    # Set up the regressor.
    device = chainer.get_device(args.device)
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=device)

    # Perform the prediction.
    print('Evaluating...')
    converter = converter_method_dict[args.method]
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator, regressor, converter=converter,
                            device=device)()
    print('Evaluation result: ', eval_result)

    save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:38,代碼來源:predict_own_dataset.py

示例9: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
  # Training settings
  args = get_args()

  # Set up a neural network to train
  model = L.Classifier(Net())

  if args.gpu >= 0:
    # Make a specified GPU current
    chainer.backends.cuda.get_device_from_id(args.gpu).use()
    model.to_gpu() # Copy the model to the GPU

  # Setup an optimizer
  optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=args.momentum)
  optimizer.setup(model)

  # Load the MNIST dataset
  train, test = chainer.datasets.get_mnist(ndim=3)
  train_iter = chainer.iterators.SerialIterator(train, args.batch_size)
  test_iter = chainer.iterators.SerialIterator(test, args.test_batch_size,
                                               repeat=False, shuffle=False)

  # Set up a trainer
  updater = training.updaters.StandardUpdater(
      train_iter, optimizer, device=args.gpu)
  trainer = training.Trainer(updater, (args.epochs, 'epoch'))

  # Evaluate the model with the test dataset for each epoch
  trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))

  # Write a log of evaluation statistics for each epoch
  trainer.extend(extensions.LogReport())

  # Print selected entries of the log to stdout
  trainer.extend(extensions.PrintReport(
      ['epoch', 'main/loss', 'validation/main/loss',
       'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

  # Send selected entries of the log to CMLE HP tuning system
  trainer.extend(
    HpReport(hp_metric_val='validation/main/loss', hp_metric_tag='my_loss'))

  if args.resume:
    # Resume from a snapshot
    tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
    if not os.path.exists(tmp_model_file):
      subprocess.check_call([
        'gsutil', 'cp', os.path.join(args.model_dir, MODEL_FILE_NAME),
        tmp_model_file])
    if os.path.exists(tmp_model_file):
      chainer.serializers.load_npz(tmp_model_file, trainer)
  
  trainer.run()

  if args.model_dir:
    tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
    serializers.save_npz(tmp_model_file, model)
    subprocess.check_call([
        'gsutil', 'cp', tmp_model_file,
        os.path.join(args.model_dir, MODEL_FILE_NAME)]) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:62,代碼來源:mnist.py

示例10: run_training

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def run_training(args, model):
    trainer = create_trainer(args, model)

    # Dump a computational graph from 'loss' variable at the first iteration
    # The "main" refers to the target link of the "main" optimizer.
    trainer.extend(extensions.dump_graph('main/loss'))

    # Take a snapshot for each specified epoch
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport())

    # Save two plot images to the result dir
    if args.plot and extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(['main/loss', 'validation/main/loss'],
                                  'epoch', file_name='loss.png'))
        trainer.extend(
            extensions.PlotReport(
                ['main/accuracy', 'validation/main/accuracy'],
                'epoch', file_name='accuracy.png'))

    # Print selected entries of the log to stdout
    # Here "main" refers to the target link of the "main" optimizer again, and
    # "validation" refers to the default name of the Evaluator extension.
    # Entries other than 'epoch' are reported by the Classifier link, called by
    # either the updater or the evaluator.
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

    # Print a progress bar to stdout
    trainer.extend(extensions.ProgressBar())

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run() 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:44,代碼來源:gen_resnet50.py

示例11: prepare_trainer

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare_trainer(net,
                    optimizer_name,
                    lr,
                    momentum,
                    num_epochs,
                    train_data,
                    val_data,
                    logging_dir_path,
                    use_gpus):
    if optimizer_name == "sgd":
        optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
    elif optimizer_name == "nag":
        optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
    else:
        raise Exception("Unsupported optimizer: {}".format(optimizer_name))
    optimizer.setup(net)

    # devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
    devices = (0,) if use_gpus else (-1,)

    updater = training.updaters.StandardUpdater(
        iterator=train_data["iterator"],
        optimizer=optimizer,
        device=devices[0])
    trainer = training.Trainer(
        updater=updater,
        stop_trigger=(num_epochs, "epoch"),
        out=logging_dir_path)

    val_interval = 100000, "iteration"
    log_interval = 1000, "iteration"

    trainer.extend(
        extension=extensions.Evaluator(
            iterator=val_data["iterator"],
            target=net,
            device=devices[0]),
        trigger=val_interval)
    trainer.extend(extensions.dump_graph("main/loss"))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(
        extensions.snapshot_object(
            net,
            "model_iter_{.updater.iteration}"),
        trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(
        extensions.PrintReport([
            "epoch", "iteration", "main/loss", "validation/main/loss", "main/accuracy", "validation/main/accuracy",
            "lr"]),
        trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    return trainer 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:57,代碼來源:train_ch.py

示例12: prepare_trainer

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare_trainer(net,
                    optimizer_name,
                    lr,
                    momentum,
                    num_epochs,
                    train_iter,
                    val_iter,
                    logging_dir_path,
                    num_gpus=0):
    if optimizer_name == "sgd":
        optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
    elif optimizer_name == "nag":
        optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
    else:
        raise Exception('Unsupported optimizer: {}'.format(optimizer_name))
    optimizer.setup(net)

    # devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
    devices = (0,) if num_gpus > 0 else (-1,)

    updater = training.updaters.StandardUpdater(
        iterator=train_iter,
        optimizer=optimizer,
        device=devices[0])
    trainer = training.Trainer(
        updater=updater,
        stop_trigger=(num_epochs, 'epoch'),
        out=logging_dir_path)

    val_interval = 100000, 'iteration'
    log_interval = 1000, 'iteration'

    trainer.extend(
        extension=extensions.Evaluator(
            val_iter,
            net,
            device=devices[0]),
        trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(
        extensions.snapshot_object(
            net,
            'model_iter_{.updater.iteration}'),
        trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(
        extensions.PrintReport([
            'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy',
            'lr']),
        trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    return trainer 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:57,代碼來源:train_ch_cifar.py

示例13: train

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def train(train_data_path, test_data_path, args):
    device = chainer.get_device(args.device)
    device.use()

    vocab = collections.defaultdict(lambda: len(vocab))
    vocab['<unk>'] = 0

    train_data = babi.read_data(vocab, train_data_path)
    test_data = babi.read_data(vocab, test_data_path)
    print('Training data: %s: %d' % (train_data_path, len(train_data)))
    print('Test data: %s: %d' % (test_data_path, len(test_data)))

    train_data = memnn.convert_data(train_data, args.max_memory)
    test_data = memnn.convert_data(test_data, args.max_memory)

    encoder = memnn.make_encoder(args.sentence_repr)
    network = memnn.MemNN(
        args.unit, len(vocab), encoder, args.max_memory, args.hop)
    model = chainer.links.Classifier(network, label_key='answer')
    opt = chainer.optimizers.Adam()

    model.to_device(device)

    opt.setup(model)

    train_iter = chainer.iterators.SerialIterator(
        train_data, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(
        test_data, args.batchsize, repeat=False, shuffle=False)
    updater = chainer.training.StandardUpdater(train_iter, opt, device=device)
    trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))

    @chainer.training.make_extension()
    def fix_ignore_label(trainer):
        network.fix_ignore_label()

    trainer.extend(fix_ignore_label)
    trainer.extend(extensions.Evaluator(test_iter, model, device=device))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.run()

    if args.model:
        memnn.save_model(args.model, model, vocab) 
開發者ID:chainer,項目名稱:chainer,代碼行數:49,代碼來源:train_memnn.py

示例14: train

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def train(train_data_path, test_data_path, args):
    vocab = collections.defaultdict(lambda: len(vocab))
    vocab['<unk>'] = 0

    train_data = babi.read_data(vocab, train_data_path)
    test_data = babi.read_data(vocab, test_data_path)
    print('Training data: %s: %d' % (train_data_path, len(train_data)))
    print('Test data: %s: %d' % (test_data_path, len(test_data)))

    train_data = memnn.convert_data(train_data, args.max_memory)
    test_data = memnn.convert_data(test_data, args.max_memory)

    encoder = memnn.make_encoder(args.sentence_repr)
    network = memnn.MemNN(
        args.unit, len(vocab), encoder, args.max_memory, args.hop)
    model = chainer.links.Classifier(network, label_key='answer')
    opt = chainer.optimizers.Adam()

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    opt.setup(model)

    train_iter = chainer.iterators.SerialIterator(
        train_data, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(
        test_data, args.batchsize, repeat=False, shuffle=False)
    updater = chainer.training.StandardUpdater(
        train_iter, opt, device=args.gpu)
    trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))

    @chainer.training.make_extension()
    def fix_ignore_label(trainer):
        network.fix_ignore_label()

    trainer.extend(fix_ignore_label)
    trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.run()

    if args.model:
        memnn.save_model(args.model, model, vocab) 
開發者ID:pfnet,項目名稱:pfio,代碼行數:49,代碼來源:train_memnn.py

示例15: main

# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
    gpu, out = -1, "result"
    stepsize = 0.001
    batchsize, epoch = 10000, 10
    beta, gamma = 0., 1.

    data_id, prior = 0, .5
    n_p, n_n, n_u, n_t, n_vp, n_vn, n_vu = 100, 0, 10000, 100, 20, 20, 100
    data_name, x_p, x_n, x_u, y_u, x_t, y_t, x_vp, x_vn, x_vu, y_vu \
        = load_dataset(data_id, n_p, n_n, n_u, prior, n_t, n_vp=n_vp, n_vn=n_vn, n_vu=n_vu)

    x_p, x_n, x_u, x_t, x_vp, x_vn, x_vu = x_p.astype(np.float32), x_n.astype(np.float32), \
        x_u.astype(np.float32), x_t.astype(np.float32), x_vp.astype(np.float32), \
        x_vn.astype(np.float32), x_vu.astype(np.float32), 
    XYtrain = TupleDataset(np.r_[x_p, x_u], np.r_[np.ones(100), np.zeros(10000)].astype(np.int32))
    XYtest = TupleDataset(np.r_[x_vp, x_vu], np.r_[np.ones(20), np.zeros(100)].astype(np.int32))
    train_iter = chainer.iterators.SerialIterator(XYtrain, batchsize)
    test_iter = chainer.iterators.SerialIterator(XYtest, batchsize, repeat=False, shuffle=False)

    loss_type = lambda x: F.sigmoid(-x)
    nnpu_risk = PU_Risk(prior, loss=loss_type, nnPU=True, gamma=gamma, beta=beta)
    pu_acc = PU_Accuracy(prior)

    model = L.Classifier(MLP(), lossfun=nnpu_risk, accfun=pu_acc)
    if gpu >= 0:
        chainer.backends.cuda.get_device_from_id(gpu).use()
        model.to_gpu(gpu)

    optimizer = chainer.optimizers.Adam(alpha=stepsize)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(0.005))

    updater = chainer.training.StandardUpdater(train_iter, optimizer, device=gpu)
    trainer = chainer.training.Trainer(updater, (epoch, 'epoch'), out=out)
    trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
    trainer.extend(extensions.Evaluator(test_iter, model, device=gpu))
    trainer.extend(extensions.ProgressBar())
    trainer.extend(extensions.PrintReport(
                ['epoch', 'main/loss', 'validation/main/loss',
                 'main/accuracy', 'validation/main/accuracy', 
                 'elapsed_time']))
    key = 'validation/main/accuracy'
    model_name = 'model'
    trainer.extend(extensions.snapshot_object(model, model_name),
                   trigger=chainer.training.triggers.MaxValueTrigger(key))
    if extensions.PlotReport.available():
            trainer.extend(
                extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name=f'loss_curve.png'))
            trainer.extend(
                extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 
                                      'epoch', file_name=f'accuracy_curve.png'))


    trainer.run()

    yh = pred(model, x_t, batchsize, gpu)
    mr = prior*np.mean(yh[y_t == +1] <= 0) + (1-prior)*np.mean(yh[y_t == -1] >= 0)
    print("mr: {}".format(mr)) 
開發者ID:t-sakai-kure,項目名稱:pywsl,代碼行數:60,代碼來源:demo_nnpu_chainer.py


注:本文中的chainer.training.extensions.Evaluator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。