本文整理匯總了Python中chainer.training.extensions.Evaluator方法的典型用法代碼示例。如果您正苦於以下問題:Python extensions.Evaluator方法的具體用法?Python extensions.Evaluator怎麽用?Python extensions.Evaluator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.training.extensions
的用法示例。
在下文中一共展示了extensions.Evaluator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_trainer
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def create_trainer(args, model):
# Setup an optimizer
# optimizer = chainer.optimizers.Adam()
optimizer = chainer.optimizers.SGD()
optimizer.setup(model)
# Load the MNIST dataset
train, test = chainer.datasets.get_mnist()
train_iter = MyIterator(train, args.batchsize, shuffle=False)
test_iter = MyIterator(test, args.batchsize, repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
return trainer
示例2: main
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main(model):
train = read_data(fold=BUZZER_TRAIN_FOLD)
valid = read_data(fold=BUZZER_DEV_FOLD)
print('# train data: {}'.format(len(train)))
print('# valid data: {}'.format(len(valid)))
train_iter = chainer.iterators.SerialIterator(train, 64)
valid_iter = chainer.iterators.SerialIterator(valid, 64, repeat=False, shuffle=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
updater = training.updaters.StandardUpdater(train_iter, optimizer, converter=convert_seq, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out=model.model_dir)
trainer.extend(extensions.Evaluator(valid_iter, model, converter=convert_seq, device=0))
record_trigger = training.triggers.MaxValueTrigger('validation/main/accuracy', (1, 'epoch'))
trainer.extend(extensions.snapshot_object(model, 'buzzer.npz'), trigger=record_trigger)
trainer.extend(extensions.LogReport())
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport([
'epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
]))
if not os.path.isdir(model.model_dir):
os.mkdir(model.model_dir)
trainer.run()
示例3: create_trainer
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def create_trainer(args, model):
# Setup an optimizer
#optimizer = chainer.optimizers.Adam()
optimizer = chainer.optimizers.SGD()
optimizer.setup(model)
# Load the datasets and mean file
mean = np.load(args.mean)
train = PreprocessedDataset(args.train, args.root, mean, insize)
val = PreprocessedDataset(args.val, args.root, mean, insize, False)
# These iterators load the images with subprocesses running in parallel to
# the training/validation.
train_iter = MyIterator(
train, args.batchsize, n_processes=args.loaderjob)
val_iter = MyIterator(
val, args.val_batchsize, repeat=False, n_processes=args.loaderjob)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(val_iter, model, device=args.gpu))
return trainer
示例4: get_example
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def get_example(self, i):
# It reads the i-th image/label pair and return a preprocessed image.
# It applies following preprocesses:
# - Cropping (random or center rectangular)
# - Random flip
# - Scaling to [0, 1] value
crop_size = self.crop_size
image, label = self.base[i]
_, h, w = image.shape
if self.random:
# Randomly crop a region and flip the image
top = random.randint(0, h - crop_size - 1)
left = random.randint(0, w - crop_size - 1)
if random.randint(0, 1):
image = image[:, :, ::-1]
else:
# Crop the center
top = (h - crop_size) // 2
left = (w - crop_size) // 2
bottom = top + crop_size
right = left + crop_size
image = image[:, top:bottom, left:right]
image -= self.mean[:, top:bottom, left:right]
image *= (1.0 / 255.0) # Scale to [0, 1]
return image, label
# chainermn.create_multi_node_evaluator can be also used with user customized
# evaluator classes that inherit chainer.training.extensions.Evaluator.
示例5: setUp
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def setUp(self):
self.data = [
numpy.random.uniform(-1, 1, (3, 4)).astype('f') for _ in range(2)]
self.batches = [
numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f')
for _ in range(2)]
self.iterator = DummyIterator(self.data)
self.converter = DummyConverter(self.batches)
self.target = DummyModel(self)
self.evaluator = extensions.Evaluator(
self.iterator, self.target, converter=self.converter)
self.expect_mean = numpy.mean([numpy.sum(x) for x in self.batches])
示例6: prepare
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare(self, data, batches, device):
iterator = DummyIterator(data)
converter = DummyConverter(batches)
target = DummyModelTwoArgs(self)
evaluator = extensions.Evaluator(
iterator, target, converter=converter, device=device)
return iterator, converter, target, evaluator
示例7: test_user_warning
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def test_user_warning(self):
dataset = numpy.ones((4, 6))
iterator = self.iterator_class(dataset, 2, repeat=self.repeat)
if self.repeat:
with testing.assert_warns(UserWarning):
extensions.Evaluator(iterator, {})
示例8: main
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
# Parse the arguments.
args = parse_arguments()
if args.label:
labels = args.label
else:
raise ValueError('No target label was specified.')
# Dataset preparation.
def postprocess_label(label_list):
return numpy.asarray(label_list, dtype=numpy.float32)
print('Preprocessing dataset...')
preprocessor = preprocess_method_dict[args.method]()
parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label,
labels=labels, smiles_col='SMILES')
dataset = parser.parse(args.datafile)['dataset']
test = dataset
print('Predicting...')
# Set up the regressor.
device = chainer.get_device(args.device)
model_path = os.path.join(args.in_dir, args.model_filename)
regressor = Regressor.load_pickle(model_path, device=device)
# Perform the prediction.
print('Evaluating...')
converter = converter_method_dict[args.method]
test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
eval_result = Evaluator(test_iterator, regressor, converter=converter,
device=device)()
print('Evaluation result: ', eval_result)
save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result)
示例9: main
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
# Training settings
args = get_args()
# Set up a neural network to train
model = L.Classifier(Net())
if args.gpu >= 0:
# Make a specified GPU current
chainer.backends.cuda.get_device_from_id(args.gpu).use()
model.to_gpu() # Copy the model to the GPU
# Setup an optimizer
optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=args.momentum)
optimizer.setup(model)
# Load the MNIST dataset
train, test = chainer.datasets.get_mnist(ndim=3)
train_iter = chainer.iterators.SerialIterator(train, args.batch_size)
test_iter = chainer.iterators.SerialIterator(test, args.test_batch_size,
repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epochs, 'epoch'))
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport())
# Print selected entries of the log to stdout
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
# Send selected entries of the log to CMLE HP tuning system
trainer.extend(
HpReport(hp_metric_val='validation/main/loss', hp_metric_tag='my_loss'))
if args.resume:
# Resume from a snapshot
tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
if not os.path.exists(tmp_model_file):
subprocess.check_call([
'gsutil', 'cp', os.path.join(args.model_dir, MODEL_FILE_NAME),
tmp_model_file])
if os.path.exists(tmp_model_file):
chainer.serializers.load_npz(tmp_model_file, trainer)
trainer.run()
if args.model_dir:
tmp_model_file = os.path.join('/tmp', MODEL_FILE_NAME)
serializers.save_npz(tmp_model_file, model)
subprocess.check_call([
'gsutil', 'cp', tmp_model_file,
os.path.join(args.model_dir, MODEL_FILE_NAME)])
示例10: run_training
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def run_training(args, model):
trainer = create_trainer(args, model)
# Dump a computational graph from 'loss' variable at the first iteration
# The "main" refers to the target link of the "main" optimizer.
trainer.extend(extensions.dump_graph('main/loss'))
# Take a snapshot for each specified epoch
frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport())
# Save two plot images to the result dir
if args.plot and extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'))
trainer.extend(
extensions.PlotReport(
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'))
# Print selected entries of the log to stdout
# Here "main" refers to the target link of the "main" optimizer again, and
# "validation" refers to the default name of the Evaluator extension.
# Entries other than 'epoch' are reported by the Classifier link, called by
# either the updater or the evaluator.
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
# Print a progress bar to stdout
trainer.extend(extensions.ProgressBar())
if args.resume:
# Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)
# Run the training
trainer.run()
示例11: prepare_trainer
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare_trainer(net,
optimizer_name,
lr,
momentum,
num_epochs,
train_data,
val_data,
logging_dir_path,
use_gpus):
if optimizer_name == "sgd":
optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
elif optimizer_name == "nag":
optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
else:
raise Exception("Unsupported optimizer: {}".format(optimizer_name))
optimizer.setup(net)
# devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
devices = (0,) if use_gpus else (-1,)
updater = training.updaters.StandardUpdater(
iterator=train_data["iterator"],
optimizer=optimizer,
device=devices[0])
trainer = training.Trainer(
updater=updater,
stop_trigger=(num_epochs, "epoch"),
out=logging_dir_path)
val_interval = 100000, "iteration"
log_interval = 1000, "iteration"
trainer.extend(
extension=extensions.Evaluator(
iterator=val_data["iterator"],
target=net,
device=devices[0]),
trigger=val_interval)
trainer.extend(extensions.dump_graph("main/loss"))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(
extensions.snapshot_object(
net,
"model_iter_{.updater.iteration}"),
trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(
extensions.PrintReport([
"epoch", "iteration", "main/loss", "validation/main/loss", "main/accuracy", "validation/main/accuracy",
"lr"]),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
return trainer
示例12: prepare_trainer
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def prepare_trainer(net,
optimizer_name,
lr,
momentum,
num_epochs,
train_iter,
val_iter,
logging_dir_path,
num_gpus=0):
if optimizer_name == "sgd":
optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum)
elif optimizer_name == "nag":
optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum)
else:
raise Exception('Unsupported optimizer: {}'.format(optimizer_name))
optimizer.setup(net)
# devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, )
devices = (0,) if num_gpus > 0 else (-1,)
updater = training.updaters.StandardUpdater(
iterator=train_iter,
optimizer=optimizer,
device=devices[0])
trainer = training.Trainer(
updater=updater,
stop_trigger=(num_epochs, 'epoch'),
out=logging_dir_path)
val_interval = 100000, 'iteration'
log_interval = 1000, 'iteration'
trainer.extend(
extension=extensions.Evaluator(
val_iter,
net,
device=devices[0]),
trigger=val_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(
extensions.snapshot_object(
net,
'model_iter_{.updater.iteration}'),
trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(
extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy',
'lr']),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
return trainer
示例13: train
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def train(train_data_path, test_data_path, args):
device = chainer.get_device(args.device)
device.use()
vocab = collections.defaultdict(lambda: len(vocab))
vocab['<unk>'] = 0
train_data = babi.read_data(vocab, train_data_path)
test_data = babi.read_data(vocab, test_data_path)
print('Training data: %s: %d' % (train_data_path, len(train_data)))
print('Test data: %s: %d' % (test_data_path, len(test_data)))
train_data = memnn.convert_data(train_data, args.max_memory)
test_data = memnn.convert_data(test_data, args.max_memory)
encoder = memnn.make_encoder(args.sentence_repr)
network = memnn.MemNN(
args.unit, len(vocab), encoder, args.max_memory, args.hop)
model = chainer.links.Classifier(network, label_key='answer')
opt = chainer.optimizers.Adam()
model.to_device(device)
opt.setup(model)
train_iter = chainer.iterators.SerialIterator(
train_data, args.batchsize)
test_iter = chainer.iterators.SerialIterator(
test_data, args.batchsize, repeat=False, shuffle=False)
updater = chainer.training.StandardUpdater(train_iter, opt, device=device)
trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))
@chainer.training.make_extension()
def fix_ignore_label(trainer):
network.fix_ignore_label()
trainer.extend(fix_ignore_label)
trainer.extend(extensions.Evaluator(test_iter, model, device=device))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
if args.model:
memnn.save_model(args.model, model, vocab)
示例14: train
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def train(train_data_path, test_data_path, args):
vocab = collections.defaultdict(lambda: len(vocab))
vocab['<unk>'] = 0
train_data = babi.read_data(vocab, train_data_path)
test_data = babi.read_data(vocab, test_data_path)
print('Training data: %s: %d' % (train_data_path, len(train_data)))
print('Test data: %s: %d' % (test_data_path, len(test_data)))
train_data = memnn.convert_data(train_data, args.max_memory)
test_data = memnn.convert_data(test_data, args.max_memory)
encoder = memnn.make_encoder(args.sentence_repr)
network = memnn.MemNN(
args.unit, len(vocab), encoder, args.max_memory, args.hop)
model = chainer.links.Classifier(network, label_key='answer')
opt = chainer.optimizers.Adam()
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
opt.setup(model)
train_iter = chainer.iterators.SerialIterator(
train_data, args.batchsize)
test_iter = chainer.iterators.SerialIterator(
test_data, args.batchsize, repeat=False, shuffle=False)
updater = chainer.training.StandardUpdater(
train_iter, opt, device=args.gpu)
trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'))
@chainer.training.make_extension()
def fix_ignore_label(trainer):
network.fix_ignore_label()
trainer.extend(fix_ignore_label)
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
if args.model:
memnn.save_model(args.model, model, vocab)
示例15: main
# 需要導入模塊: from chainer.training import extensions [as 別名]
# 或者: from chainer.training.extensions import Evaluator [as 別名]
def main():
gpu, out = -1, "result"
stepsize = 0.001
batchsize, epoch = 10000, 10
beta, gamma = 0., 1.
data_id, prior = 0, .5
n_p, n_n, n_u, n_t, n_vp, n_vn, n_vu = 100, 0, 10000, 100, 20, 20, 100
data_name, x_p, x_n, x_u, y_u, x_t, y_t, x_vp, x_vn, x_vu, y_vu \
= load_dataset(data_id, n_p, n_n, n_u, prior, n_t, n_vp=n_vp, n_vn=n_vn, n_vu=n_vu)
x_p, x_n, x_u, x_t, x_vp, x_vn, x_vu = x_p.astype(np.float32), x_n.astype(np.float32), \
x_u.astype(np.float32), x_t.astype(np.float32), x_vp.astype(np.float32), \
x_vn.astype(np.float32), x_vu.astype(np.float32),
XYtrain = TupleDataset(np.r_[x_p, x_u], np.r_[np.ones(100), np.zeros(10000)].astype(np.int32))
XYtest = TupleDataset(np.r_[x_vp, x_vu], np.r_[np.ones(20), np.zeros(100)].astype(np.int32))
train_iter = chainer.iterators.SerialIterator(XYtrain, batchsize)
test_iter = chainer.iterators.SerialIterator(XYtest, batchsize, repeat=False, shuffle=False)
loss_type = lambda x: F.sigmoid(-x)
nnpu_risk = PU_Risk(prior, loss=loss_type, nnPU=True, gamma=gamma, beta=beta)
pu_acc = PU_Accuracy(prior)
model = L.Classifier(MLP(), lossfun=nnpu_risk, accfun=pu_acc)
if gpu >= 0:
chainer.backends.cuda.get_device_from_id(gpu).use()
model.to_gpu(gpu)
optimizer = chainer.optimizers.Adam(alpha=stepsize)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(0.005))
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=gpu)
trainer = chainer.training.Trainer(updater, (epoch, 'epoch'), out=out)
trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu))
trainer.extend(extensions.ProgressBar())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy',
'elapsed_time']))
key = 'validation/main/accuracy'
model_name = 'model'
trainer.extend(extensions.snapshot_object(model, model_name),
trigger=chainer.training.triggers.MaxValueTrigger(key))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name=f'loss_curve.png'))
trainer.extend(
extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name=f'accuracy_curve.png'))
trainer.run()
yh = pred(model, x_t, batchsize, gpu)
mr = prior*np.mean(yh[y_t == +1] <= 0) + (1-prior)*np.mean(yh[y_t == -1] >= 0)
print("mr: {}".format(mr))