當前位置: 首頁>>代碼示例>>Python>>正文


Python training.StandardUpdater方法代碼示例

本文整理匯總了Python中chainer.training.StandardUpdater方法的典型用法代碼示例。如果您正苦於以下問題:Python training.StandardUpdater方法的具體用法?Python training.StandardUpdater怎麽用?Python training.StandardUpdater使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.training的用法示例。


在下文中一共展示了training.StandardUpdater方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_updater

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def setup_updater(mode, gpus, train_iter, optimizer):
    gpu0 = gpus[0]
    if len(gpus) == 1:
        # Single GPU or CPU
        logger.info('Setup single updater (gpu: %d)', gpu0)
        updater = training.StandardUpdater(train_iter, optimizer, device=gpu0,
                                           converter=select_converter(mode))
    else:
        # Multiple GPUs
        logger.info('Setup parallel updater (gpu: %s)', str(gpus))
        devs = {'slave{}'.format(i): gpu for i, gpu in enumerate(gpus[1:])}
        devs['main'] = gpu0
        updater = training.updaters.MultiprocessParallelUpdater(
            train_iter, optimizer, devices=devs,
            converter=select_converter(mode))
    return updater 
開發者ID:takiyu,項目名稱:portrait_matting,代碼行數:18,代碼來源:train.py

示例2: train

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
    model= Objective(network, loss=loss, gamma=gamma)

    #optimizer = optimizers.SGD()
    optimizer = optimizers.Adam()
    optimizer.setup(model)

    train = tuple_dataset.TupleDataset(X_tr, Y_tr)
    test = tuple_dataset.TupleDataset(X_te, Y_te)

    train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
    test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
                                         shuffle=False)
    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (n_epochs, 'epoch'))

    trainer.run() 
開發者ID:mblondel,項目名稱:soft-dtw,代碼行數:19,代碼來源:plot_chainer_MLP.py

示例3: test_linear_network

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def test_linear_network():

    # To ensure repeatability of experiments
    np.random.seed(1042)

    # Load data set
    dataset = get_dataset(True)
    iterator = LtrIterator(dataset, repeat=True, shuffle=True)
    eval_iterator = LtrIterator(dataset, repeat=False, shuffle=False)

    # Create neural network with chainer and apply our loss function
    predictor = links.Linear(None, 1)
    loss = Ranker(predictor, listnet)

    # Build optimizer, updater and trainer
    optimizer = optimizers.Adam(alpha=0.2)
    optimizer.setup(loss)
    updater = training.StandardUpdater(iterator, optimizer)
    trainer = training.Trainer(updater, (10, 'epoch'))

    # Evaluate loss before training
    before_loss = eval(loss, eval_iterator)

    # Train neural network
    trainer.run()

    # Evaluate loss after training
    after_loss = eval(loss, eval_iterator)

    # Assert precomputed values
    assert_almost_equal(before_loss, 0.26958397)
    assert_almost_equal(after_loss, 0.2326711) 
開發者ID:rjagerman,項目名稱:shoelace,代碼行數:34,代碼來源:test_linear_network.py

示例4: update_core

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def update_core(self):
        loss = 0
        # When we pass one iterator and optimizer to StandardUpdater.__init__,
        # they are automatically named 'main'.
        train_iter = self.get_iterator('main')
        optimizer = self.get_optimizer('main')

        # Progress the dataset iterator for bprop_len words at each iteration.
        for i in range(self.bprop_len):
            # Get the next batch (a list of tuples of two word IDs)
            batch = train_iter.__next__()

            # Concatenate the word IDs to matrices and send them to the device
            # self.converter does this job
            # (it is chainer.dataset.concat_examples by default)
            x, t = self.converter(batch, self.device)

            # Compute the loss at this time step and accumulate it
            # loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))
            loss += optimizer.target(x, t)

        optimizer.target.cleargrads()  # Clear the parameter gradients
        loss.backward()  # Backprop
        loss.unchain_backward()  # Truncate the graph
        optimizer.update()  # Update the parameters


# Routine to rewrite the result dictionary of LogReport to add perplexity
# values 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:31,代碼來源:language_modeling.py

示例5: _prepare_multinode_snapshot

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def _prepare_multinode_snapshot(n, result):
    n_units = 100
    batchsize = 10
    comm = create_communicator('naive')
    model = L.Classifier(MLP(n_units, 10))
    optimizer = chainermn.create_multi_node_optimizer(
        chainer.optimizers.Adam(), comm)
    optimizer.setup(model)

    if comm.rank == 0:
        train, _ = chainer.datasets.get_mnist()
    else:
        train, _ = None, None

    train = chainermn.scatter_dataset(train, comm, shuffle=True)
    train_iter = chainer.iterators.SerialIterator(train, batchsize)

    updater = StandardUpdater(train_iter, optimizer)
    trainer = Trainer(updater, out=result)

    snapshot = extensions.snapshot(target=updater, autoload=True)
    replica_sets = []
    mn_snapshot = multi_node_snapshot(comm, snapshot, replica_sets)
    mn_snapshot.initialize(trainer)
    for _ in range(n):
        updater.update()

    return updater, mn_snapshot, trainer 
開發者ID:chainer,項目名稱:chainer,代碼行數:30,代碼來源:test_multi_node_snapshot.py

示例6: setup_mnist_trainer

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def setup_mnist_trainer(self, display_log=False, use_chx=False):
        batchsize = 100
        n_units = 100

        comm = self.communicator
        model = L.Classifier(MLP(n_units, 10))

        model.to_device(get_device(None, use_chx))

        optimizer = chainermn.create_multi_node_optimizer(
            chainer.optimizers.Adam(), comm)
        optimizer.setup(model)

        if comm.rank == 0:
            train, test = chainer.datasets.get_mnist()
        else:
            train, test = None, None

        train = chainermn.scatter_dataset(train, comm, shuffle=True)
        test = chainermn.scatter_dataset(test, comm, shuffle=True)

        train_iter = chainer.iterators.SerialIterator(train, batchsize)
        test_iter = chainer.iterators.SerialIterator(test, batchsize,
                                                     repeat=False,
                                                     shuffle=False)

        updater = training.StandardUpdater(
            train_iter,
            optimizer
        )

        return updater, optimizer, train_iter, test_iter, model 
開發者ID:chainer,項目名稱:chainer,代碼行數:34,代碼來源:test_checkpoint.py

示例7: update_core

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def update_core(self):
        """Update model one step."""
        # When we pass one iterator and optimizer to StandardUpdater.__init__,
        # they are automatically named 'main'.
        train_iter = self.get_iterator("main")
        optimizer = self.get_optimizer("main")

        # Get the next batch (a list of json files)
        batch = train_iter.next()
        if isinstance(batch, tuple):
            x = tuple(arr.to(self.device) for arr in batch)
        else:
            x = batch
            for key in x.keys():
                x[key] = x[key].to(self.device)

        # compute loss and gradient
        if isinstance(x, tuple):
            loss = self.model(*x).mean() / self.accum_grad
        else:
            loss = self.model(**x).mean() / self.accum_grad
        loss.backward()

        # update parameters
        self.forward_count += 1
        if self.forward_count != self.accum_grad:
            return
        self.forward_count = 0

        # compute the gradient norm to check if it is normal or not
        grad_norm = self.clip_grad_norm(self.model.parameters(), self.grad_clip)
        logging.debug("grad norm={}".format(grad_norm))
        if math.isnan(grad_norm):
            logging.warning("grad norm is nan. Do not update model.")
        else:
            optimizer.step()
        optimizer.zero_grad() 
開發者ID:espnet,項目名稱:espnet,代碼行數:39,代碼來源:tts.py

示例8: update_core

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def update_core(self):
        """Update the model."""
        # When we pass one iterator and optimizer to StandardUpdater.__init__,
        # they are automatically named 'main'.
        train_iter = self.get_iterator("main")
        optimizer = self.get_optimizer("main")
        # Progress the dataset iterator for sentences at each iteration.
        self.model.zero_grad()  # Clear the parameter gradients
        accum = {"loss": 0.0, "nll": 0.0, "count": 0}
        for _ in range(self.accum_grad):
            batch = train_iter.__next__()
            # Concatenate the token IDs to matrices and send them to the device
            # self.converter does this job
            # (it is chainer.dataset.concat_examples by default)
            x, t = concat_examples(batch, device=self.device[0], padding=(0, -100))
            if self.device[0] == -1:
                loss, nll, count = self.model(x, t)
            else:
                # apex does not support torch.nn.DataParallel
                loss, nll, count = data_parallel(self.model, (x, t), self.device)

            # backward
            loss = loss.mean() / self.accum_grad
            if self.use_apex:
                from apex import amp

                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()  # Backprop
            # accumulate stats
            accum["loss"] += float(loss)
            accum["nll"] += float(nll.sum())
            accum["count"] += int(count.sum())

        for k, v in accum.items():
            reporter.report({k: v}, optimizer.target)
        if self.gradclip is not None:
            nn.utils.clip_grad_norm_(self.model.parameters(), self.gradclip)
        optimizer.step()  # Update the parameters
        self.scheduler.step(n_iter=self.iteration) 
開發者ID:espnet,項目名稱:espnet,代碼行數:43,代碼來源:lm.py

示例9: _train_trainer

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def _train_trainer(self, examples):
        """Training with chainer trainer module"""
        train_iter = SerialIterator(examples, args.batch_size)
        optimizer = optimizers.Adam(alpha=args.lr)
        optimizer.setup(self.nnet)

        def loss_func(boards, target_pis, target_vs):
            out_pi, out_v = self.nnet(boards)
            l_pi = self.loss_pi(target_pis, out_pi)
            l_v = self.loss_v(target_vs, out_v)
            total_loss = l_pi + l_v
            chainer.reporter.report({
                'loss': total_loss,
                'loss_pi': l_pi,
                'loss_v': l_v,
            }, observer=self.nnet)
            return total_loss

        updater = training.StandardUpdater(
            train_iter, optimizer, device=args.device, loss_func=loss_func, converter=converter)
        # Set up the trainer.
        trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.out)
        # trainer.extend(extensions.snapshot(), trigger=(args.epochs, 'epoch'))
        trainer.extend(extensions.LogReport())
        trainer.extend(extensions.PrintReport([
            'epoch', 'main/loss', 'main/loss_pi', 'main/loss_v', 'elapsed_time']))
        trainer.extend(extensions.ProgressBar(update_interval=10))
        trainer.run() 
開發者ID:suragnair,項目名稱:alpha-zero-general,代碼行數:30,代碼來源:NNet.py

示例10: train

# 需要導入模塊: from chainer import training [as 別名]
# 或者: from chainer.training import StandardUpdater [as 別名]
def train():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--model', '-m', type=str, default=None)
    parser.add_argument('--opt', type=str, default=None)
    parser.add_argument('--epoch', '-e', type=int, default=3)
    parser.add_argument('--lr', '-l', type=float, default=0.001)
    parser.add_argument('--inf', type=int, default=10)
    parser.add_argument('--outf', type=int, default=10)
    parser.add_argument('--batch', '-b', type=int, default=8)
    args = parser.parse_args()

    train = dataset.MovingMnistDataset(0, 7000, args.inf, args.outf)
    train_iter = iterators.SerialIterator(train, batch_size=args.batch, shuffle=True)
    test = dataset.MovingMnistDataset(7000, 10000, args.inf, args.outf)
    test_iter = iterators.SerialIterator(test, batch_size=args.batch, repeat=False, shuffle=False)

    model = network.MovingMnistNetwork(sz=[128,64,64], n=2)

    if args.model != None:
        print( "loading model from " + args.model )
        serializers.load_npz(args.model, model)

    if args.gpu >= 0:
        cuda.get_device_from_id(0).use()
        model.to_gpu()

    opt = optimizers.Adam(alpha=args.lr)
    opt.setup(model)

    if args.opt != None:
        print( "loading opt from " + args.opt )
        serializers.load_npz(args.opt, opt)

    updater = training.StandardUpdater(train_iter, opt, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out='results')

    trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
    trainer.extend(extensions.LogReport(trigger=(10, 'iteration')))
    trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss']))
    trainer.extend(extensions.ProgressBar(update_interval=1))

    trainer.run()

    modelname = "./results/model"
    print( "saving model to " + modelname )
    serializers.save_npz(modelname, model)

    optname = "./results/opt"
    print( "saving opt to " + optname )
    serializers.save_npz(optname, opt) 
開發者ID:joisino,項目名稱:ConvLSTM,代碼行數:53,代碼來源:train.py


注:本文中的chainer.training.StandardUpdater方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。