本文整理匯總了Python中chainer.testing.product方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.product方法的具體用法?Python testing.product怎麽用?Python testing.product使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.testing
的用法示例。
在下文中一共展示了testing.product方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_find_snapshot_files
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def test_find_snapshot_files(self):
noise = ('tmpsnapshot_iter_{}.{}'.format(i, j)
for i, j in zip(range(10, 304), range(10, 200)))
for file in itertools.chain(noise, self.files):
file = os.path.join(self.path, file)
open(file, 'w').close()
snapshot_files = _find_snapshot_files(self.fmt, self.path)
expected = [self.fmt.format(i*10, j*10)
for i, j in itertools.product(range(0, 10), range(0, 10))]
timestamps, snapshot_files = zip(*snapshot_files)
expected.sort()
snapshot_files = sorted(list(snapshot_files))
assert expected == snapshot_files
示例2: inject_backend_tests
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def inject_backend_tests():
decorator = backend.inject_backend_tests(
None,
# CPU tests
testing.product({
'use_cuda': [False],
'use_ideep': ['never', 'always'],
})
# GPU tests
+ [{'use_cuda': True}]
# ChainerX tests
+ [
{'use_chainerx': True, 'chainerx_device': 'native:0'},
{'use_chainerx': True, 'chainerx_device': 'cuda:0'},
{'use_chainerx': True, 'chainerx_device': 'cuda:1'},
])
return decorator
示例3: check_forward
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def check_forward(self, x_data, axis):
eps = self.eps
x = chainer.Variable(x_data)
y = functions.normalize(x, eps=eps, axis=axis)
self.assertEqual(y.data.dtype, self.dtype)
y_data = cuda.to_cpu(y.data)
y_expect = numpy.empty_like(self.x)
shape = self.x.shape
indices = []
axis_tuple = axis if isinstance(axis, tuple) else (axis,)
for i in six.moves.range(len(shape)):
if i not in axis_tuple:
indices.append(six.moves.range(shape[i]))
else:
indices.append([slice(None)])
indices_tuple = list(itertools.product(*indices))
for index in indices_tuple:
# Note: Casting back the result of `numpy.linalg.norm` to `x.dtype`
# because old NumPy casts it to float32 when a float16 value is
# given.
numerator = numpy.linalg.norm(self.x[index]).astype(x.dtype) + eps
y_expect[index] = self.x[index] / numerator
testing.assert_allclose(y_expect, y_data, **self.check_forward_options)
示例4: _create_parameters
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def _create_parameters():
params = testing.product({
'file_obj': [False, True],
'size': [(48, 32)],
'dtype': [np.float32, np.uint8, bool]})
no_color_params = testing.product({
'format': ['bmp', 'jpeg', 'png'],
'color': [False],
'alpha': [None]})
no_alpha_params = testing.product({
'format': ['bmp', 'jpeg', 'png'],
'color': [True],
'alpha': [None]})
alpha_params = testing.product({
# writing alpha image with jpeg encoding didn't work
'format': ['png'],
'color': [True],
'alpha': ['ignore', 'blend_with_white', 'blend_with_black']})
params = testing.product_dict(
params,
no_color_params + no_alpha_params + alpha_params)
return params
示例5: test_first_order
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def test_first_order(self):
# First order, so its Hessian will contain None
params, y = self._generate_params_and_first_order_output()
old_style_funcs = trpo._find_old_style_function([y])
if old_style_funcs:
self.skipTest("\
Chainer v{} does not support double backprop of these functions: {}.".format(
chainer.__version__, old_style_funcs))
vec = np.random.rand(4).astype(np.float32)
# Hessian-vector product computation should raise an error due to None
with self.assertRaises(AssertionError):
compute_hessian_vector_product(y, params, vec)
示例6: make_array
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def make_array(start, shape, dtype, device):
size = numpy.product(shape, dtype='i')
a = numpy.arange(start, start + size)
a = a.reshape(shape)
a = a.astype(dtype, copy=False)
return device.send(a)
示例7: setUp
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def setUp(self):
self.path = tempfile.mkdtemp()
self.files = (self.fmt.format(i*10, j*10) for i, j
in itertools.product(range(0, 10), range(0, 10)))
示例8: make_array
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def make_array(start, shape, dtype):
size = numpy.product(shape, dtype='i')
a = numpy.arange(start, start + size)
a = a.reshape(shape)
a = a.astype(dtype, copy=False)
return a
示例9: _crf1d
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def _crf1d(self, cost_data, xs_data, ys_data):
z = numpy.zeros((self.batches[0],), numpy.float32)
for b, length in enumerate(self.lengths):
for ys in itertools.product(range(self.n_label), repeat=length):
z[b] += numpy.exp(chainer.cuda.to_cpu(self._calc_score(b, ys)))
score = numpy.zeros((self.batches[0],), numpy.float32)
for b, length in enumerate(self.lengths):
ys = [self.ys[i][b] for i in range(length)]
score[b] = self._calc_score(b, ys)
loss = -(score - numpy.log(z))
return numpy.sum(loss) / self.batches[0]
示例10: _generate_test_parameter
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def _generate_test_parameter(
parameter_list, inner_shape, inner_event_shape,
reinterpreted_batch_ndims):
shape_pattern = _generate_valid_shape_pattern(
inner_shape, inner_event_shape, reinterpreted_batch_ndims)
return [
dict(dicts[0], **dicts[1])
for dicts in itertools.product(parameter_list, shape_pattern)
]
示例11: inject_backend_tests
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def inject_backend_tests(method_names):
decorator = backend.inject_backend_tests(
method_names,
# CPU tests
testing.product({
'use_cuda': [False],
'use_ideep': ['never', 'always'],
})
# GPU tests
+ [{'use_cuda': True}])
return decorator
示例12: inject_backend_tests
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def inject_backend_tests(method_names):
decorator = backend.inject_backend_tests(
method_names,
# CPU tests
testing.product({
'use_cuda': [False],
'use_ideep': ['never', 'always'],
}) +
# GPU tests
[{'use_cuda': True}])
return decorator
示例13: xs_iter
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def xs_iter(dims):
return itertools.product(*[range(d) for d in dims])
示例14: kxs_iter
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def kxs_iter(x, outs, ksize, stride, pad):
return itertools.product(
*[range(max(0, -p + s * _x), min(-p + s * _x + k, out))
for (_x, out, k, s, p) in zip(x, outs, ksize, stride, pad)])
示例15: check_im2col_nd
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import product [as 別名]
def check_im2col_nd(self, ksize, stride, pad, gpu):
dims = self.dims
if gpu:
img = cuda.to_gpu(self.img)
else:
img = self.img
col = conv_nd.im2col_nd(img, ksize, stride, pad)
outs = tuple(conv_nd.get_conv_outsize(d, k, s, p)
for (d, k, s, p) in zip(dims, ksize, stride, pad))
expected_shape = (2, 3) + ksize + outs
self.assertEqual(col.shape, expected_shape)
col = cuda.to_cpu(col)
for n in moves.range(2):
for c in moves.range(3):
for xs in itertools.product(
*[moves.range(out) for out in outs]):
for dxs in itertools.product(
*[moves.range(k) for k in ksize]):
oxs = tuple(x * s - p + dx
for (x, s, p, dx)
in zip(xs, stride, pad, dxs))
if all(0 <= ox < d for (ox, d) in zip(oxs, dims)):
col_index = (n, c) + dxs + xs
img_index = (n, c) + oxs
self.assertEqual(
col[col_index], self.img[img_index])
else:
col_index = (n, c) + dxs + xs
self.assertEqual(col[col_index], 0)