當前位置: 首頁>>代碼示例>>Python>>正文


Python chainer.testing方法代碼示例

本文整理匯總了Python中chainer.testing方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.testing方法的具體用法?Python chainer.testing怎麽用?Python chainer.testing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer的用法示例。


在下文中一共展示了chainer.testing方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _test

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def _test(self, gpu):
        if gpu >= 0:
            chainer.cuda.get_device_from_id(gpu).use()
            xp = chainer.cuda.cupy
        else:
            xp = np
        batch_probs = xp.asarray([[0.3, 0.7],
                                  [0.8, 0.2],
                                  [0.5, 0.5],
                                  [0.0, 1.0],
                                  [1.0, 0.0]], dtype=np.float32)
        counter = np.zeros(batch_probs.shape, dtype=batch_probs.dtype)
        for _ in range(1000):
            batch_indices = chainer.cuda.to_cpu(
                distribution.sample_discrete_actions(batch_probs))
            for i in range(batch_probs.shape[0]):
                counter[i][batch_indices[i]] += 1
        np.testing.assert_allclose(
            counter / 1000, chainer.cuda.to_cpu(batch_probs), atol=0.05) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:test_distribution.py

示例2: check_backward

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def check_backward(self, s_data, i_data, gx_data, gt_data):
        # We cannot use check_backward method as a thin stack reuses ndarray.
        gt_old = gt_data.copy()
        s = chainer.Variable(s_data)
        i = chainer.Variable(i_data)
        x, t = thin_stack.thin_stack_get(s, i)
        x.grad = gx_data
        t.grad = gt_data

        t.backward()
        for j, ind in enumerate(i_data):
            for k in range(self.shape[1]):
                if k == ind:
                    testing.assert_allclose(
                        s.grad[j, k], gt_old[j, k] + gx_data[j])
                else:
                    testing.assert_allclose(
                        s.grad[j, k], gt_old[j, k])

        self.assertIsNone(i.grad)
        # Thin stack reueses the same gradient array.
        self.assertIs(s.grad, gt_data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_thin_stack.py

示例3: check_serialize

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def check_serialize(self, value1, value2, value3):
        xp = chainer.backend.get_array_module(value1, value2, value3)
        self.summary.add(value1)
        self.summary.add(value2)

        summary = chainer.reporter.Summary()
        testing.save_and_load_npz(self.summary, summary)
        summary.add(value3)

        expected_mean = (value1 + value2 + value3) / 3.
        expected_std = xp.sqrt(
            (value1**2 + value2**2 + value3**2) / 3. - expected_mean**2)

        mean = summary.compute_mean()
        testing.assert_allclose(mean, expected_mean)

        mean, std = summary.make_statistics()
        testing.assert_allclose(mean, expected_mean)
        testing.assert_allclose(std, expected_std) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_reporter.py

示例4: test_serialize_backward_compat

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_serialize_backward_compat(self):
        with tempfile.NamedTemporaryFile(delete=False) as f:
            # old version does not save anything
            numpy.savez(f, dummy=0)
            with testing.assert_warns(UserWarning):
                chainer.serializers.load_npz(f.name, self.summary)

        self.summary.add(2.)
        self.summary.add(3.)

        mean = self.summary.compute_mean()
        testing.assert_allclose(mean, 2.5)

        mean, std = self.summary.make_statistics()
        testing.assert_allclose(mean, 2.5)
        testing.assert_allclose(std, 0.5) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_reporter.py

示例5: check

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def check(self, summary, data):
        mean = summary.compute_mean()
        self.assertEqual(set(mean.keys()), set(data.keys()))
        for name in data.keys():
            m = sum(data[name]) / float(len(data[name]))
            testing.assert_allclose(mean[name], m)

        stats = summary.make_statistics()
        self.assertEqual(
            set(stats.keys()),
            set(data.keys()).union(name + '.std' for name in data.keys()))
        for name in data.keys():
            m = sum(data[name]) / float(len(data[name]))
            s = numpy.sqrt(
                sum(x * x for x in data[name]) / float(len(data[name]))
                - m * m)
            testing.assert_allclose(stats[name], m)
            testing.assert_allclose(stats[name + '.std'], s) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_reporter.py

示例6: test_copy_and_to_gpu_uninit_multi_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_copy_and_to_gpu_uninit_multi_gpu(self):
        cupy = cuda.cupy
        l0 = self.link
        l1 = l0.copy()
        l2 = l0.copy()
        self.assertIsNone(l0.u.data)
        self.assertIsNone(l1.u.data)
        self.assertIsNone(l2.u.data)
        with testing.assert_warns(DeprecationWarning):
            l1.to_gpu()
        l1.u.initialize((2, 3))
        with testing.assert_warns(DeprecationWarning):
            l2.to_gpu()
        l2.u.initialize((2, 3))
        self.assertIsNone(l0.u.data)
        self.assertIsInstance(l1.u.data, cupy.ndarray)
        self.assertIsInstance(l2.u.data, cupy.ndarray)
        self.assertNotEqual(l1.u.data.data, l2.u.data.data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_link.py

示例7: test_to_cpu_on_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_to_cpu_on_cpu(self):
        x = self.link.x.data
        gx = self.link.x.grad
        y = self.link.y.data
        gy = self.link.y.grad
        p = self.link.p
        with testing.assert_warns(DeprecationWarning):
            self.link.to_cpu()
        self.assertIs(self.link.x.data, x)
        self.assertIs(self.link.x.grad, gx)
        self.assertIs(self.link.y.data, y)
        self.assertIs(self.link.y.grad, gy)
        self.assertIsNone(self.link.u.data)
        u = self.link.u
        with pytest.raises(RuntimeError):
            u.grad
        self.assertIs(self.link.p, p) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_link.py

示例8: test_to_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_to_cpu(self):
        with testing.assert_warns(DeprecationWarning):
            self.link.to_gpu()
        with testing.assert_warns(DeprecationWarning):
            self.link.to_cpu()
        self.link.v.initialize((2, 3))
        self.assertIs(self.link.xp, numpy)
        self.assertIsInstance(self.link.x.data, numpy.ndarray)
        self.assertIsInstance(self.link.x.grad, numpy.ndarray)
        self.assertIsInstance(self.link.y.data, numpy.ndarray)
        self.assertIsInstance(self.link.y.grad, numpy.ndarray)
        self.assertIsNone(self.link.u.data)
        u = self.link.u
        with pytest.raises(RuntimeError):
            u.grad
        self.assertIsInstance(self.link.v.data, numpy.ndarray)
        self.assertIsInstance(self.link.v.grad, numpy.ndarray)
        self.assertIsInstance(self.link.p, numpy.ndarray) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_link.py

示例9: test_to_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_to_gpu(self):
        cupy = cuda.cupy
        with testing.assert_warns(DeprecationWarning):
            self.link.to_gpu()
        self.link.v.initialize((2, 3))
        self.assertIs(self.link.xp, cupy)
        self.assertIsInstance(self.link.x.data, cupy.ndarray)
        self.assertIsInstance(self.link.x.grad, cupy.ndarray)
        self.assertIsInstance(self.link.y.data, cupy.ndarray)
        self.assertIsInstance(self.link.y.grad, cupy.ndarray)
        self.assertIsNone(self.link.u.data)
        u = self.link.u
        with pytest.raises(RuntimeError):
            u.grad
        self.assertIsInstance(self.link.v.data, cupy.ndarray)
        self.assertIsInstance(self.link.v.grad, cupy.ndarray)
        self.assertIsInstance(self.link.p, cupy.ndarray) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_link.py

示例10: test_repeat_with_share

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_repeat_with_share(self):
        ret = self.link.repeat(2, mode='share')
        self.assertEqual(len(ret), 2)
        # Both should be different objects from the original link
        self.assertIsNot(ret[0], self.link)
        self.assertIsNot(ret[1], self.link)
        # Object IDs of elements should be different
        self.assertIsNot(ret[0], ret[1])
        self.assertIsNot(ret[0].x, ret[1].x)
        # But the array objects should be the same
        self.assertIs(ret[0].x.array, ret[1].x.array)
        # But shape, type, and value of paratmeres shuld be same
        self.assertEqual(ret[0].x.shape, self.link.x.shape)
        self.assertEqual(ret[0].x.dtype, self.link.x.dtype)
        self.assertEqual(ret[0].x.shape, ret[1].x.shape)
        self.assertEqual(ret[0].x.dtype, ret[1].x.dtype)
        numpy.testing.assert_array_equal(ret[0].x.array, ret[1].x.array) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_link.py

示例11: test_copyparams

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_copyparams(self):
        l1 = chainer.Link()
        with l1.init_scope():
            l1.x = chainer.Parameter(shape=(2, 3))
            l1.y = chainer.Parameter()
        l2 = chainer.Link()
        with l2.init_scope():
            l2.x = chainer.Parameter(shape=2)
        l3 = chainer.Link()
        with l3.init_scope():
            l3.x = chainer.Parameter(shape=3)
        c1 = chainer.ChainList(l1, l2)
        c2 = chainer.ChainList(c1, l3)
        l1.x.data.fill(0)
        l2.x.data.fill(1)
        l3.x.data.fill(2)

        self.c2.copyparams(c2)

        numpy.testing.assert_array_equal(self.l1.x.data, l1.x.data)
        numpy.testing.assert_array_equal(self.l2.x.data, l2.x.data)
        numpy.testing.assert_array_equal(self.l3.x.data, l3.x.data) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_link.py

示例12: test_intel64_to_intel64

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_intel64_to_intel64(self):
        link = self.link
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        prev_y = link.y
        prev_v = link.v
        prev_pa = link.pa
        prev_ps = link.ps
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        assert isinstance(link.device, backend.Intel64Device)

        # Everything should be left untouched

        # Initialized parameter
        assert link.y is prev_y
        # Uninitialized parameter
        assert link.v is prev_v
        # Persistent ndarray
        assert link.pa is prev_pa
        # Persistent scalar
        assert link.ps is prev_ps 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_link.py

示例13: test_gpu_to_intel64

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_gpu_to_intel64(self):
        link = self.link
        with testing.assert_warns(DeprecationWarning):
            link.to_gpu()
        assert link.device.device == cuda.Device(0)
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        assert isinstance(link.device, backend.Intel64Device)

        # Arrays should be converted to ideep.mdarray

        # Initialized parameter
        assert isinstance(link.y.data, intel64.ideep.mdarray)
        _assert_variable_array_equal(link.y, self.y_array)
        # Uninitialized parameter
        assert link.v.data is None
        # Persistent ndarray
        assert isinstance(link.pa, intel64.ideep.mdarray)
        _assert_arrays_equal(link.pa, self.pa_array)
        # Persistent scalar
        assert link.ps == self.ps_scalar 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_link.py

示例14: test_intel64_to_gpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_intel64_to_gpu(self):
        link = self.link
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        assert isinstance(link.device, backend.Intel64Device)
        with testing.assert_warns(DeprecationWarning):
            link.to_gpu()
        assert link.device.device == cuda.Device(0)

        # Arrays should be converted to cupy.ndarray

        # Initialized parameter
        assert isinstance(link.y.data, cuda.cupy.ndarray)
        _assert_variable_array_equal(link.y, self.y_array)
        # Uninitialized parameter
        assert link.v.data is None
        # Persistent ndarray
        assert isinstance(link.pa, cuda.ndarray)
        _assert_arrays_equal(link.pa, self.pa_array)
        # Persistent scalar
        assert link.ps == self.ps_scalar 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_link.py

示例15: test_intel64_to_cpu

# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import testing [as 別名]
def test_intel64_to_cpu(self):
        link = self.link
        with testing.assert_warns(DeprecationWarning):
            link.to_intel64()
        assert isinstance(link.device, backend.Intel64Device)
        with testing.assert_warns(DeprecationWarning):
            link.to_cpu()
        assert isinstance(link.device, backend.CpuDevice)

        # Arrays should be converted to numpy.ndarray

        # Initialized parameter
        assert isinstance(link.y.data, numpy.ndarray)
        _assert_variable_array_equal(link.y, self.y_array)
        # Uninitialized parameter
        assert link.v.data is None
        # Persistent ndarray
        assert isinstance(link.pa, numpy.ndarray)
        _assert_arrays_equal(link.pa, self.pa_array)
        # Persistent scalar
        assert link.ps == self.ps_scalar 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_link.py


注:本文中的chainer.testing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。