本文整理匯總了Python中chainer.testing.attr.gpu方法的典型用法代碼示例。如果您正苦於以下問題:Python attr.gpu方法的具體用法?Python attr.gpu怎麽用?Python attr.gpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.testing.attr
的用法示例。
在下文中一共展示了attr.gpu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _test_call
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def _test_call(self, gpu):
nonlinearity = getattr(F, self.nonlinearity)
mlp = chainerrl.links.MLPBN(
in_size=self.in_size,
out_size=self.out_size,
hidden_sizes=self.hidden_sizes,
normalize_input=self.normalize_input,
normalize_output=self.normalize_output,
nonlinearity=nonlinearity,
last_wscale=self.last_wscale,
)
batch_size = 7
x = np.random.rand(batch_size, self.in_size).astype(np.float32)
if gpu >= 0:
mlp.to_gpu(gpu)
x = chainer.cuda.to_gpu(x)
y = mlp(x)
self.assertEqual(y.shape, (batch_size, self.out_size))
self.assertEqual(chainer.cuda.get_array_module(y),
chainer.cuda.get_array_module(x))
示例2: test_forward_cpu_gpu_equal
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_cpu_gpu_equal(self):
# cpu
x_cpu = chainer.Variable(self.x)
rois_cpu = chainer.Variable(self.rois)
roi_indices_cpu = chainer.Variable(self.roi_indices)
y_cpu = functions.roi_average_pooling_2d(
x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize,
spatial_scale=self.spatial_scale)
# gpu
x_gpu = chainer.Variable(cuda.to_gpu(self.x))
rois_gpu = chainer.Variable(cuda.to_gpu(self.rois))
roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices))
y_gpu = functions.roi_average_pooling_2d(
x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize,
spatial_scale=self.spatial_scale)
testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
示例3: test_forward_cpu_gpu_equal
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_cpu_gpu_equal(self):
# cpu
x_cpu = chainer.Variable(self.x)
rois_cpu = chainer.Variable(self.rois)
roi_indices_cpu = chainer.Variable(self.roi_indices)
y_cpu = functions.roi_max_pooling_2d(
x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize,
spatial_scale=self.spatial_scale)
# gpu
x_gpu = chainer.Variable(cuda.to_gpu(self.x))
rois_gpu = chainer.Variable(cuda.to_gpu(self.rois))
roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices))
y_gpu = functions.roi_max_pooling_2d(
x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize,
spatial_scale=self.spatial_scale)
testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
示例4: test_forward_cpu_gpu_equal
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_cpu_gpu_equal(self):
# cpu
x_cpu = chainer.Variable(self.x)
rois_cpu = chainer.Variable(self.rois)
roi_indices_cpu = chainer.Variable(self.roi_indices)
y_cpu = functions.roi_average_align_2d(
x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize,
spatial_scale=self.spatial_scale,
sampling_ratio=self.sampling_ratio,
)
# gpu
x_gpu = chainer.Variable(cuda.to_gpu(self.x))
rois_gpu = chainer.Variable(cuda.to_gpu(self.rois))
roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices))
y_gpu = functions.roi_average_align_2d(
x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize,
spatial_scale=self.spatial_scale,
sampling_ratio=self.sampling_ratio,
)
testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
示例5: get_pytest_marks
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def get_pytest_marks(self):
marks = []
if self.use_chainerx:
marks.append(attr.chainerx)
backend_name, device_index = self.chainerx_device.split(':')
device_index = int(device_index)
if backend_name == 'cuda':
marks.append(attr.gpu)
if device_index >= 1:
marks.append(attr.multi_gpu(device_index + 1))
elif self.use_cuda:
marks.append(attr.gpu)
if self.use_cudnn != 'never':
marks.append(attr.cudnn)
if self.cuda_device >= 1:
marks.append(attr.multi_gpu(self.cuda_device + 1))
else:
if self.use_ideep != 'never':
marks.append(attr.ideep)
assert all(callable(_) for _ in marks)
return marks
示例6: test_forward_cpu_gpu_equal
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_cpu_gpu_equal(self):
# cpu
x_cpu = chainer.Variable(self.x)
rois_cpu = chainer.Variable(self.rois)
y_cpu = functions.roi_align_2d(
x_cpu, rois_cpu, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale,
sampling_ratio=self.sampling_ratio,
)
# gpu
x_gpu = chainer.Variable(cuda.to_gpu(self.x))
rois_gpu = chainer.Variable(cuda.to_gpu(self.rois))
y_gpu = functions.roi_align_2d(
x_gpu, rois_gpu, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale,
sampling_ratio=self.sampling_ratio,
)
testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
示例7: _test_call
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def _test_call(self, gpu):
nonlinearity = getattr(F, self.nonlinearity)
model = chainerrl.q_functions.FCSAQFunction(
n_dim_obs=self.n_dim_obs,
n_dim_action=self.n_dim_action,
n_hidden_layers=self.n_hidden_layers,
n_hidden_channels=self.n_hidden_channels,
nonlinearity=nonlinearity,
last_wscale=self.last_wscale,
)
self._test_call_given_model(model, gpu)
示例8: test_call_cpu
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_call_cpu(self):
self._test_call(gpu=-1)
示例9: test_call_gpu
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_call_gpu(self):
self._test_call(gpu=0)
示例10: _test_call
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def _test_call(self, gpu):
# This method only check if a given model can receive random input
# data and return output data with the correct interface.
nonlinearity = getattr(F, self.nonlinearity)
min_action = np.full((self.action_size,), -0.01, dtype=np.float32)
max_action = np.full((self.action_size,), 0.01, dtype=np.float32)
model = self._make_model(
n_input_channels=self.n_input_channels,
action_size=self.action_size,
bound_action=self.bound_action,
min_action=min_action,
max_action=max_action,
nonlinearity=nonlinearity,
)
batch_size = 7
x = np.random.rand(
batch_size, self.n_input_channels).astype(np.float32)
if gpu >= 0:
model.to_gpu(gpu)
x = chainer.cuda.to_gpu(x)
min_action = chainer.cuda.to_gpu(min_action)
max_action = chainer.cuda.to_gpu(max_action)
y = model(x)
self.assertTrue(isinstance(
y, chainerrl.distribution.ContinuousDeterministicDistribution))
a = y.sample()
self.assertTrue(isinstance(a, chainer.Variable))
self.assertEqual(a.shape, (batch_size, self.action_size))
self.assertEqual(chainer.cuda.get_array_module(a),
chainer.cuda.get_array_module(x))
if self.bound_action:
self.assertTrue((a.array <= max_action).all())
self.assertTrue((a.array >= min_action).all())
示例11: _get_method
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def _get_method(self, prefix, gpu):
suffix = 'gpu' if gpu else 'cpu'
return getattr(self.f, prefix + '_' + suffix)
示例12: check_forward
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def check_forward(self, gpu):
y1, y2 = self.f.forward((self.x1, self.x2))
self.assertEqual(self.f.check_type_forward.call_count, 0)
self.assertEqual(self._get_method('forward', not gpu).call_count, 0)
self._get_method('forward', gpu).assert_called_once_with(
(self.x1, self.x2))
self.assertTrue((cuda.to_cpu(y1) == cuda.to_cpu(self.y1)).all())
self.assertTrue((cuda.to_cpu(y2) == cuda.to_cpu(self.y2)).all())
示例13: check_backward
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def check_backward(self, gpu):
gx1, gx2 = self.f.backward((self.x1, self.x2), (self.gy1, self.gy2))
self.assertEqual(self._get_method('backward', not gpu).call_count, 0)
self._get_method('backward', gpu).assert_called_once_with(
(self.x1, self.x2), (self.gy1, self.gy2))
self.assertTrue((cuda.to_cpu(gx1) == cuda.to_cpu(self.gx1)).all())
self.assertIsNone(gx2)
示例14: test_forward_mixed_cpu_gpu_1
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_mixed_cpu_gpu_1(self):
# self.link is not sent to gpu
with self.assertRaises(TypeError):
self.check_forward(cuda.to_gpu(self.x))
示例15: test_forward_mixed_cpu_gpu_2
# 需要導入模塊: from chainer.testing import attr [as 別名]
# 或者: from chainer.testing.attr import gpu [as 別名]
def test_forward_mixed_cpu_gpu_2(self):
with testing.assert_warns(DeprecationWarning):
self.link.to_gpu()
with self.assertRaises(TypeError):
# self.x is not sent to gpu
self.check_forward(self.x)