本文整理匯總了Python中chainer.testing.assert_allclose方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_allclose方法的具體用法?Python testing.assert_allclose怎麽用?Python testing.assert_allclose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.testing
的用法示例。
在下文中一共展示了testing.assert_allclose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_forward
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check_forward(self, x_data):
xp = cuda.get_array_module(x_data)
y = maximum_entropy_mellowmax(x_data)
self.assertEqual(y.array.dtype, self.dtype)
print('y', y.array)
# Outputs must be positive
xp.testing.assert_array_less(xp.zeros_like(y.array), y.array)
# Sums must be ones
sums = xp.sum(y.array, axis=1)
testing.assert_allclose(sums, xp.ones_like(sums))
# Expectations must be equal to memllowmax's outputs
testing.assert_allclose(
xp.sum(y.array * x_data, axis=1), mellowmax(x_data, axis=1).array)
示例2: check_backward
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check_backward(self, s_data, i_data, gx_data, gt_data):
# We cannot use check_backward method as a thin stack reuses ndarray.
gt_old = gt_data.copy()
s = chainer.Variable(s_data)
i = chainer.Variable(i_data)
x, t = thin_stack.thin_stack_get(s, i)
x.grad = gx_data
t.grad = gt_data
t.backward()
for j, ind in enumerate(i_data):
for k in range(self.shape[1]):
if k == ind:
testing.assert_allclose(
s.grad[j, k], gt_old[j, k] + gx_data[j])
else:
testing.assert_allclose(
s.grad[j, k], gt_old[j, k])
self.assertIsNone(i.grad)
# Thin stack reueses the same gradient array.
self.assertIs(s.grad, gt_data)
示例3: check_serialize
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check_serialize(self, value1, value2, value3):
xp = chainer.backend.get_array_module(value1, value2, value3)
self.summary.add(value1)
self.summary.add(value2)
summary = chainer.reporter.Summary()
testing.save_and_load_npz(self.summary, summary)
summary.add(value3)
expected_mean = (value1 + value2 + value3) / 3.
expected_std = xp.sqrt(
(value1**2 + value2**2 + value3**2) / 3. - expected_mean**2)
mean = summary.compute_mean()
testing.assert_allclose(mean, expected_mean)
mean, std = summary.make_statistics()
testing.assert_allclose(mean, expected_mean)
testing.assert_allclose(std, expected_std)
示例4: test_serialize_backward_compat
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_serialize_backward_compat(self):
with tempfile.NamedTemporaryFile(delete=False) as f:
# old version does not save anything
numpy.savez(f, dummy=0)
with testing.assert_warns(UserWarning):
chainer.serializers.load_npz(f.name, self.summary)
self.summary.add(2.)
self.summary.add(3.)
mean = self.summary.compute_mean()
testing.assert_allclose(mean, 2.5)
mean, std = self.summary.make_statistics()
testing.assert_allclose(mean, 2.5)
testing.assert_allclose(std, 0.5)
示例5: check
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check(self, summary, data):
mean = summary.compute_mean()
self.assertEqual(set(mean.keys()), set(data.keys()))
for name in data.keys():
m = sum(data[name]) / float(len(data[name]))
testing.assert_allclose(mean[name], m)
stats = summary.make_statistics()
self.assertEqual(
set(stats.keys()),
set(data.keys()).union(name + '.std' for name in data.keys()))
for name in data.keys():
m = sum(data[name]) / float(len(data[name]))
s = numpy.sqrt(
sum(x * x for x in data[name]) / float(len(data[name]))
- m * m)
testing.assert_allclose(stats[name], m)
testing.assert_allclose(stats[name + '.std'], s)
示例6: check_double_grad
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check_double_grad(self):
self.forward()
ys = [getattr(self, name) for name in self.y_names]
gxs = chainer.grad(ys, self.xs, self.gys, self.gxs,
enable_double_backprop=True,
loss_scale=self.loss_scale)
y = sum(gxs)
ggxs = chainer.grad([y], self.xs)
expected = self.expected_double_grad()
self.assertEqual(len(ggxs), len(expected))
try:
for a, e in zip(ggxs, expected):
testing.assert_allclose(self._get_value(a), self._get_value(e))
except Exception:
self._print_inputs()
self._print_variables('gxs ', gxs)
self._print_variables('ggxs (actual) ', ggxs)
self._print_variables('ggxs (expected)', expected)
raise
示例7: test_retain_output
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_retain_output(self):
xp = numpy
x_array = xp.random.randn(3)
y1_grad = xp.random.randn(3)
x_grad_grad = xp.random.randn(3)
x = chainer.Variable(x_array, name='x')
y0, y1 = exp_and_expm1(x)
del y0
# (x: Variable) requires grad
# (y1_grad: ndarray) does not require grad
gx, = chainer.grad([y1], [x], [y1_grad], enable_double_backprop=True)
# assert gx == exp(x) * y1_grad
xp.testing.assert_allclose(
gx.array,
xp.exp(x.array) * y1_grad)
gx_, = chainer.grad([gx], [x], [x_grad_grad])
xp.testing.assert_allclose(
gx_.array,
gx.array * x_grad_grad)
示例8: test_unchain_split
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_unchain_split(self):
x = chainer.Variable(numpy.arange(4).astype('f').reshape(2, 2))
h0, h1 = chainer.functions.split_axis(x, [1], axis=0)
y = chainer.functions.sum(h0)
z = chainer.functions.sum(h1)
w = y + z
h0.unchain()
dy_dh0 = numpy.array([[1., 1.]])
dz_dh1 = numpy.array([[1., 1.]])
dy_dx = None
dz_dx = numpy.array([[0., 0.], [1., 1.]])
dw_dx = numpy.array([[0., 0.], [1., 1.]])
testing.assert_allclose(chainer.grad([y], [h0])[0].array, dy_dh0)
testing.assert_allclose(chainer.grad([z], [h1])[0].array, dz_dh1)
assert chainer.grad([y], [x])[0] is dy_dx
testing.assert_allclose(chainer.grad([z], [x])[0].array, dz_dx)
testing.assert_allclose(chainer.grad([w], [x])[0].array, dw_dx)
示例9: check
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check(self, option, grads_before, grads_after):
vs = []
v = self._var(0.5)
for _ in range(4):
vs.append(v)
v += v
vs.append(v)
v *= 1.
_, x1, _, x2, _, y1, _, y2 = vs
gx1 = self._var(1000.)
gx2 = self._var(100.)
gy1 = self._var(10.)
gy2 = self._var(1.)
for v, g in zip(vs, grads_before):
if g is not None:
v.grad_var = self._var(g)
grads = chainer.grad(
[y1, y2], [x1, x2], [gy1, gy2], [gx1, gx2], **option)
numpy.testing.assert_allclose(grads[0].array, 1248.)
numpy.testing.assert_allclose(grads[1].array, 124.)
for v, ans in zip(vs, grads_after):
if ans is None:
self.assertIsNone(v.grad)
else:
numpy.testing.assert_allclose(v.grad, ans)
示例10: test_multiple_output_call_count
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_multiple_output_call_count(self):
x = chainer.Variable(np.array([1, 2], np.float32))
f = chainer.FunctionNode()
f.forward = mock.MagicMock(
side_effect=lambda xs: tuple(x * 2 for x in xs))
f.backward = mock.MagicMock(
side_effect=lambda _, gys: tuple(gy * 2 for gy in gys))
h, = f.apply((x,))
y0 = h * 3
y1 = h * 4
y0.grad = np.array([1, 10], np.float32)
y1.grad = np.array([100, 1000], np.float32)
chainer.backward([y0, y1])
testing.assert_allclose(x.grad, np.array([806, 8060], np.float32))
assert f.backward.call_count == 1
示例11: _run_trainer
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def _run_trainer(self, extension, expect, optimizer=None):
if optimizer is None:
optimizer = self.optimizer
extension.initialize(self.trainer)
actual = []
for _ in expect:
self.trainer.updater.update()
actual.append(optimizer.x)
if self.trigger(self.trainer):
extension(self.trainer)
testing.assert_allclose(actual[0], expect[0])
testing.assert_allclose(actual[1], expect[1])
testing.assert_allclose(actual[2], expect[2])
testing.assert_allclose(actual[3], expect[3])
testing.assert_allclose(actual[4], expect[4])
testing.assert_allclose(actual[5], expect[5])
示例12: test_statistician_percentile
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_statistician_percentile(self):
self.percentile_sigmas = (0., 50., 100.) # min, median, max
self.statistician = extensions.variable_statistics_plot.Statistician(
collect_mean=True, collect_std=True,
percentile_sigmas=self.percentile_sigmas)
stat = self.statistician(self.x, axis=None, dtype=self.x.dtype)
for s in six.itervalues(stat):
assert s.dtype == self.x.dtype
testing.assert_allclose(stat['mean'], numpy.mean(self.x))
testing.assert_allclose(stat['std'], numpy.std(self.x))
percentile = stat['percentile']
assert len(percentile) == 3
testing.assert_allclose(percentile[0], numpy.min(self.x))
testing.assert_allclose(percentile[1], numpy.median(self.x))
testing.assert_allclose(percentile[2], numpy.max(self.x))
示例13: test_update
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_update(self, backend_config):
if backend_config.xp is chainerx:
# ChainerX performs the loss scaling on its own backward
# method, the optimizer should not divide back the parameters
# This test is not actually creating a ChainerX
# computation graph so no actual loss scale is being done
self.optimizer.lr = 1.0
target = self.target
optimizer = self.optimizer
target.to_device(backend_config.device)
optimizer.setup(target)
optimizer.update()
xp = backend.get_array_module(target[0].param)
expected_data = xp.zeros(self.shape, dtype=self.dtype)
rtol, atol = 1e-4, 1e-5
if self.dtype is np.float16:
rtol, atol = 1e-1, 1e-2
for i in range(2):
testing.assert_allclose(
target[i].param.data, expected_data,
rtol=rtol, atol=atol)
示例14: test_adam_w
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def test_adam_w(self, backend_config):
xp = backend_config.xp
device = backend_config.device
link = chainer.Link(x=(1,))
link.to_device(device)
opt = optimizers.Adam(eta=0.5, weight_decay_rate=0.1)
opt.setup(link)
link.x.data.fill(1)
link.x.grad = device.send(xp.ones_like(link.x.data))
opt.update()
# compare against the value computed with v5 impl
testing.assert_allclose(link.x.data, np.array([0.9495]),
atol=1e-7, rtol=1e-7)
示例15: check_backward_accumulate
# 需要導入模塊: from chainer import testing [as 別名]
# 或者: from chainer.testing import assert_allclose [as 別名]
def check_backward_accumulate(self, xp):
inputs = self._get_inputs()
a, b, c = [inputs[i] for i in self.var_mapping]
y = muladd(a, b, c)
y.grad = self.gy
y.backward()
inputs2 = self._get_inputs()
a2, b2, c2 = [inputs2[i] for i in self.var_mapping]
y2 = chainer.as_variable(a2 * b2 + c2)
y2.grad = self.gy
y2.backward()
tol = {'atol': 1e-4, 'rtol': 1e-4}
for x, x2, (isvar, _) in zip(
inputs, inputs2, self.inputs_isvar_hasgrad):
if isvar:
xp.testing.assert_allclose(x.grad, x2.grad, **tol)