當前位置: 首頁>>代碼示例>>Python>>正文


Python serializers.save_npz方法代碼示例

本文整理匯總了Python中chainer.serializers.save_npz方法的典型用法代碼示例。如果您正苦於以下問題:Python serializers.save_npz方法的具體用法?Python serializers.save_npz怎麽用?Python serializers.save_npz使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.serializers的用法示例。


在下文中一共展示了serializers.save_npz方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __save

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def __save(self, dirname, ancestors):
        os.makedirs(dirname, exist_ok=True)
        ancestors.append(self)
        for attr in self.saved_attributes:
            assert hasattr(self, attr)
            attr_value = getattr(self, attr)
            if attr_value is None:
                continue
            if isinstance(attr_value, AttributeSavingMixin):
                assert not any(
                    attr_value is ancestor
                    for ancestor in ancestors
                ), "Avoid an infinite loop"
                attr_value.__save(os.path.join(dirname, attr), ancestors)
            else:
                serializers.save_npz(
                    os.path.join(dirname, '{}.npz'.format(attr)),
                    getattr(self, attr))
        ancestors.pop() 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:agent.py

示例2: test_resumed_trigger

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def test_resumed_trigger(self):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=None, iter_per_epoch=self.iter_per_epoch)
        with tempfile.NamedTemporaryFile(delete=False) as f:
            trigger = training.triggers.ManualScheduleTrigger(*self.schedule)
            for expected, finished in zip(self.expected[:self.resume],
                                          self.finished[:self.resume]):
                trainer.updater.update()
                self.assertEqual(trigger(trainer), expected)
                self.assertEqual(trigger.finished, finished)
            serializers.save_npz(f.name, trigger)

            trigger = training.triggers.ManualScheduleTrigger(*self.schedule)
            serializers.load_npz(f.name, trigger)
            for expected, finished in zip(self.expected[self.resume:],
                                          self.finished[self.resume:]):
                trainer.updater.update()
                self.assertEqual(trigger(trainer), expected)
                self.assertEqual(trigger.finished, finished) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_manual_schedule_trigger.py

示例3: test_resumed_trigger_sparse_call

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def test_resumed_trigger_sparse_call(self):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=None, iter_per_epoch=self.iter_per_epoch)
        accumulated = False
        with tempfile.NamedTemporaryFile(delete=False) as f:
            trigger = training.triggers.IntervalTrigger(*self.interval)
            for expected in self.expected[:self.resume]:
                trainer.updater.update()
                accumulated = accumulated or expected
                if random.randrange(2):
                    self.assertEqual(trigger(trainer), accumulated)
                    accumulated = False
            serializers.save_npz(f.name, trigger)

            trigger = training.triggers.IntervalTrigger(*self.interval)
            serializers.load_npz(f.name, trigger)
            for expected in self.expected[self.resume:]:
                trainer.updater.update()
                accumulated = accumulated or expected
                if random.randrange(2):
                    self.assertEqual(trigger(trainer), accumulated)
                    accumulated = False 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_interval_trigger.py

示例4: main

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('caffemodel')
    parser.add_argument('output')
    args = parser.parse_args()

    proto_path = 'weights/pspnet101_cityscapes_713.prototxt'
    n_class = 19
    input_size = (713, 713)

    model = PSPNetResNet101(
        n_class, None, input_size)
    model(np.random.uniform(size=(1, 3) + input_size).astype(np.float32))

    caffe_param = caffe_pb2.NetParameter()
    caffe_param.MergeFromString(open(args.caffemodel, 'rb').read())
    caffe_net = text_format.Merge(
        open(proto_path).read(), caffe_pb2.NetParameter())

    transfer(model, caffe_param, caffe_net)
    serializers.save_npz(args.output, model) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:23,代碼來源:caffe2npz.py

示例5: train

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def train(epoch=10, batch_size=32, gpu=False):
    if gpu:
        cuda.check_cuda_available()
    xp = cuda.cupy if gpu else np

    td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, image_property=IMAGE_PROP)

    # make mean image
    if not os.path.isfile(MEAN_IMAGE_FILE):
        print("make mean image...")
        td.make_mean_image(MEAN_IMAGE_FILE)
    else:
        td.mean_image_file = MEAN_IMAGE_FILE

    # train model
    label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE)
    model = alex.Alex(len(label_def))
    optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
    optimizer.setup(model)
    epoch = epoch
    batch_size = batch_size

    print("Now our model is {0} classification task.".format(len(label_def)))
    print("begin training the model. epoch:{0} batch size:{1}.".format(epoch, batch_size))

    if gpu:
        model.to_gpu()

    for i in range(epoch):
        print("epoch {0}/{1}: (learning rate={2})".format(i + 1, epoch, optimizer.lr))
        td.shuffle(overwrite=True)

        for x_batch, y_batch in td.generate_batches(batch_size):
            x = chainer.Variable(xp.asarray(x_batch))
            t = chainer.Variable(xp.asarray(y_batch))

            optimizer.update(model, x, t)
            print("loss: {0}, accuracy: {1}".format(float(model.loss.data), float(model.accuracy.data)))

        serializers.save_npz(MODEL_FILE, model)
        optimizer.lr *= 0.97 
開發者ID:icoxfog417,項目名稱:mlimages,代碼行數:43,代碼來源:chainer_alex.py

示例6: __call__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def __call__(self, trainer):
        encdec = trainer.updater.get_optimizer("main").target
        log.info("computing %s" % self.observation_name)
        dev_loss = compute_loss_all(encdec, self.data, self.eos_idx, self.mb_size,
                                    gpu=self.gpu,
                                    reverse_src=self.reverse_src, reverse_tgt=self.reverse_tgt,
                                    use_chainerx=self.use_chainerx)
        log.info("%s: %f (current best: %r)" % (self.observation_name, dev_loss, self.best_loss))
        chainer.reporter.report({self.observation_name: dev_loss})

        if self.best_loss is None or self.best_loss > dev_loss:
            log.info("loss (%s) improvement: %r -> %r" % (self.observation_name,
                                                          self.best_loss, dev_loss))
            self.best_loss = dev_loss
            if self.save_best_model_to is not None:
                log.info("saving best loss (%s) model to %s" % (self.observation_name, self.save_best_model_to,))
                serializers.save_npz(self.save_best_model_to, encdec)
                if self.config_training is not None:
                    config_session = self.config_training.copy(readonly=False)
                    config_session.add_section("model_parameters", keep_at_bottom="metadata")
                    config_session["model_parameters"]["filename"] = self.save_best_model_to
                    config_session["model_parameters"]["type"] = "model"
                    config_session["model_parameters"]["description"] = "best_loss"
                    config_session["model_parameters"]["infos"] = argument_parsing_tools.OrderedNamespace()
                    config_session["model_parameters"]["infos"]["loss"] = float(dev_loss)
                    config_session["model_parameters"]["infos"]["iteration"] = trainer.updater.iteration
                    config_session.set_metadata_modified_time()
                    config_session.save_to(self.save_best_model_to + ".config")
#                     json.dump(config_session, open(self.save_best_model_to + ".config", "w"), indent=2, separators=(',', ': ')) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:31,代碼來源:training_chainer.py

示例7: test_resumed_trigger_sparse_call

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def test_resumed_trigger_sparse_call(self):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=None, iter_per_epoch=self.iter_per_epoch)
        accumulated = False
        with tempfile.NamedTemporaryFile(delete=False) as f:
            trigger = training.triggers.ManualScheduleTrigger(*self.schedule)
            for expected, finished in zip(self.expected[:self.resume],
                                          self.finished[:self.resume]):
                trainer.updater.update()
                accumulated = accumulated or expected
                if random.randrange(2):
                    self.assertEqual(trigger(trainer), accumulated)
                    self.assertEqual(trigger.finished, finished)
                    accumulated = False
            serializers.save_npz(f.name, trigger)

            trigger = training.triggers.ManualScheduleTrigger(*self.schedule)
            serializers.load_npz(f.name, trigger)
            for expected, finished in zip(self.expected[self.resume:],
                                          self.finished[self.resume:]):
                trainer.updater.update()
                accumulated = accumulated or expected
                if random.randrange(2):
                    self.assertEqual(trigger(trainer), accumulated)
                    self.assertEqual(trigger.finished, finished)
                    accumulated = False 
開發者ID:chainer,項目名稱:chainer,代碼行數:28,代碼來源:test_manual_schedule_trigger.py

示例8: test_resumed_trigger

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def test_resumed_trigger(self):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=None, iter_per_epoch=self.iter_per_epoch)
        with tempfile.NamedTemporaryFile(delete=False) as f:
            trigger = training.triggers.IntervalTrigger(*self.interval)
            for expected in self.expected[:self.resume]:
                trainer.updater.update()
                self.assertEqual(trigger(trainer), expected)
            serializers.save_npz(f.name, trigger)

            trigger = training.triggers.IntervalTrigger(*self.interval)
            serializers.load_npz(f.name, trigger)
            for expected in self.expected[self.resume:]:
                trainer.updater.update()
                self.assertEqual(trigger(trainer), expected) 
開發者ID:chainer,項目名稱:chainer,代碼行數:17,代碼來源:test_interval_trigger.py

示例9: _test_trigger

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def _test_trigger(self, trigger, key, accuracies, expected,
                      resume=None, save=None):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=(len(accuracies), 'iteration'),
            iter_per_epoch=self.iter_per_epoch)
        updater = trainer.updater

        def _serialize_updater(serializer):
            updater.iteration = serializer('iteration', updater.iteration)
            updater.epoch = serializer('epoch', updater.epoch)
            updater.is_new_epoch = serializer(
                'is_new_epoch', updater.is_new_epoch)
        trainer.updater.serialize = _serialize_updater

        def set_observation(t):
            t.observation = {key: accuracies[t.updater.iteration-1]}
        trainer.extend(set_observation, name='set_observation',
                       trigger=(1, 'iteration'), priority=2)

        invoked_iterations = []

        def record(t):
            invoked_iterations.append(t.updater.iteration)
        trainer.extend(record, name='record', trigger=trigger, priority=1)

        if resume is not None:
            serializers.load_npz(resume, trainer)

        trainer.run()
        self.assertEqual(invoked_iterations, expected)

        if save is not None:
            serializers.save_npz(save, trainer) 
開發者ID:chainer,項目名稱:chainer,代碼行數:35,代碼來源:test_minmax_trigger.py

示例10: test_resumed_trigger_sparse_call

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def test_resumed_trigger_sparse_call(self):
        trainer = testing.get_trainer_with_mock_updater(
            stop_trigger=None, iter_per_epoch=self.iter_per_epoch)
        accumulated = False
        accumulated_finished = True
        with tempfile.NamedTemporaryFile(delete=False) as f:
            trigger = training.triggers.OnceTrigger(self.call_on_resume)
            for expected, finished in zip(self.resumed_expected[:self.resume],
                                          self.resumed_finished[:self.resume]):
                trainer.updater.update()
                accumulated = accumulated or expected
                accumulated_finished = accumulated_finished and finished
                if random.randrange(2):
                    self.assertEqual(trigger.finished, accumulated_finished)
                    self.assertEqual(trigger(trainer), accumulated)
                    accumulated = False
                    accumulated_finished = True
            serializers.save_npz(f.name, trigger)

            trigger = training.triggers.OnceTrigger(self.call_on_resume)
            serializers.load_npz(f.name, trigger)
            for expected, finished in zip(self.resumed_expected[self.resume:],
                                          self.resumed_finished[self.resume:]):
                trainer.updater.update()
                accumulated = accumulated or expected
                accumulated_finished = accumulated_finished and finished
                if random.randrange(2):
                    self.assertEqual(trigger.finished, accumulated_finished)
                    self.assertEqual(trigger(trainer), accumulated)
                    accumulated = False
                    accumulated_finished = True 
開發者ID:chainer,項目名稱:chainer,代碼行數:33,代碼來源:test_once_trigger.py

示例11: check_serialization

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def check_serialization(self, backend_config):
        with utils.tempdir() as root:
            filename = os.path.join(root, 'tmp.npz')

            layer1 = self.layer.copy('copy')
            hook1 = copy.deepcopy(self.hook)
            layer1.add_hook(hook1)

            layer1.to_device(backend_config.device)
            x = backend_config.get_array(self.x)
            with backend_config:
                layer1(x)
                with chainer.using_config('train', False):
                    y1 = layer1(x)
            serializers.save_npz(filename, layer1)

            layer2 = self.layer.copy('copy')
            hook2 = copy.deepcopy(self.hook)
            layer2.add_hook(hook2)

            # Test loading is nice.
            msg = None
            try:
                serializers.load_npz(filename, layer2)
            except Exception as e:
                msg = e
            assert msg is None

            with chainer.using_config('train', False):
                y2 = layer2(self.x.copy())

            # Test attributes are the same.
            orig_weight = _cpu._to_cpu(
                getattr(layer1, hook1.weight_name).array)
            orig_vector = _cpu._to_cpu(getattr(layer1, hook1.vector_name))
            numpy.testing.assert_array_equal(
                orig_weight, getattr(layer2, hook2.weight_name).array)
            numpy.testing.assert_array_equal(
                orig_vector, getattr(layer2, hook2.vector_name))
            testing.assert_allclose(y1.array, y2.array) 
開發者ID:chainer,項目名稱:chainer,代碼行數:42,代碼來源:test_spectral_normalization.py

示例12: save_and_load_npz

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def save_and_load_npz(src, dst):
    """Saves ``src`` to an NPZ file and loads it to ``dst``.

    This is a short cut of :func:`save_and_load` using NPZ de/serializers.

    Args:
        src: An object to save.
        dst: An object to load to.

    """
    save_and_load(src, dst, 'tmp.npz',
                  serializers.save_npz, serializers.load_npz) 
開發者ID:chainer,項目名稱:chainer,代碼行數:14,代碼來源:serializer.py

示例13: caffe_to_chainermodel

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def caffe_to_chainermodel(model, caffe_prototxt, caffemodel_path,
                          chainermodel_path):
    os.chdir(osp.dirname(caffe_prototxt))
    net = caffe.Net(caffe_prototxt, caffemodel_path, caffe.TEST)

    for name, param in net.params.iteritems():
        try:
            layer = getattr(model, name)
        except AttributeError:
            print('Skipping caffe layer: %s' % name)
            continue

        has_bias = True
        if len(param) == 1:
            has_bias = False

        print('{0}:'.format(name))
        # weight
        print('  - W: %s %s' % (param[0].data.shape, layer.W.data.shape))
        assert param[0].data.shape == layer.W.data.shape
        layer.W.data = param[0].data
        # bias
        if has_bias:
            print('  - b: %s %s' % (param[1].data.shape, layer.b.data.shape))
            assert param[1].data.shape == layer.b.data.shape
            layer.b.data = param[1].data
    S.save_npz(chainermodel_path, model) 
開發者ID:wkentaro,項目名稱:fcn,代碼行數:29,代碼來源:caffe_to_chainermodel.py

示例14: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def __init__(self, directory: str, savefun=None, fs=None):
        assert directory is not None
        self.directory = directory
        self.savefun = save_npz if savefun is None else savefun
        if fs is None:
            self.fs = pfio
        elif isinstance(fs, str):
            self.fs = pfio.create_handler(fs)
        else:
            self.fs = fs

        if not self.fs.exists(self.directory):
            self.fs.makedirs(self.directory) 
開發者ID:pfnet,項目名稱:pfio,代碼行數:15,代碼來源:snapshot_writers.py

示例15: on_epoch_done

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import save_npz [as 別名]
def on_epoch_done(epoch, n, o, loss, acc, valid_loss, valid_acc, test_loss, test_acc):
        error = 100 * (1 - acc)
        valid_error = 100 * (1 - valid_acc)
        test_error = 100 * (1 - test_acc)
        print('epoch {} done'.format(epoch))
        print('train loss: {} error: {}'.format(loss, error))
        print('valid loss: {} error: {}'.format(valid_loss, valid_error))
        print('test  loss: {} error: {}'.format(test_loss, test_error))
        if valid_error < state['best_valid_error']:
            serializers.save_npz('{}.model'.format(model_prefix), n)
            serializers.save_npz('{}.state'.format(model_prefix), o)
            state['best_valid_error'] = valid_error
            state['best_test_error'] = test_error
        if args.save_iter > 0 and (epoch + 1) % args.save_iter == 0:
            serializers.save_npz('{}_{}.model'.format(model_prefix, epoch + 1), n)
            serializers.save_npz('{}_{}.state'.format(model_prefix, epoch + 1), o)
        # prevent divergence when using identity mapping model
        if args.model == 'identity_mapping' and epoch < 9:
            o.lr = 0.01 + 0.01 * (epoch + 1)
#        if len(lr_decay_iter) == 1 and (epoch + 1) % lr_decay_iter[0] == 0 or epoch + 1 in lr_decay_iter:
        # Note, "lr_decay_iter" should be a list object to store a training schedule,
        # However, to keep up with the Python3.5, I changed to an integer value...
        if (epoch + 1) % args.lr_decay_iter == 0 and epoch > 1:
            if hasattr(optimizer, 'alpha'):
                o.alpha *= 0.1
            else:
                o.lr *= 0.1
        clock = time.clock()
        print('elapsed time: {}'.format(clock - state['clock']))
        state['clock'] = clock
        
        with open(log_file_path, 'a') as f:
            f.write('{},{},{},{},{},{},{}\n'.format(epoch + 1, loss, error, valid_loss, valid_error, test_loss, test_error)) 
開發者ID:HirokiNakahara,項目名稱:GUINNESS,代碼行數:35,代碼來源:train.py


注:本文中的chainer.serializers.save_npz方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。