當前位置: 首頁>>代碼示例>>Python>>正文


Python serializers.load_hdf5方法代碼示例

本文整理匯總了Python中chainer.serializers.load_hdf5方法的典型用法代碼示例。如果您正苦於以下問題:Python serializers.load_hdf5方法的具體用法?Python serializers.load_hdf5怎麽用?Python serializers.load_hdf5使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.serializers的用法示例。


在下文中一共展示了serializers.load_hdf5方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def get_model(args):
    model_fn = os.path.basename(args.model)
    model = imp.load_source(model_fn.split('.')[0], args.model).model

    if 'result_dir' in args:
        dst = '%s/%s' % (args.result_dir, model_fn)
        if not os.path.exists(dst):
            shutil.copy(args.model, dst)

        dst = '%s/%s' % (args.result_dir, os.path.basename(__file__))
        if not os.path.exists(dst):
            shutil.copy(__file__, dst)

    # load model
    if args.resume_model is not None:
        serializers.load_hdf5(args.resume_model, model)

    # prepare model
    if args.gpu >= 0:
        model.to_gpu()

    return model 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:24,代碼來源:train.py

示例2: test

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def test(model, test_data, vocab, inv_vocab, modelfile_to_load, params):

    print('Testing ...')
    print('Beam size: {}'.format(params.beam_size))
    print('print output to file:', out_test_filename)
    serializers.load_hdf5(modelfile_to_load, model)
    batch_test = utils_seq2seq.gen_batch_test(test_data, args.feature, 1, vocab, xp)
    output_file = open(out_test_filename, mode='w')
    for vid_batch, caption_batch, id_batch in batch_test:
        output = predict(model, params, vocab, inv_vocab, vid_batch,
                         batch_size=1, beam_size=params.beam_size)
        print('%s %s' % (id_batch[0], output))
        output_file.write(id_batch[0] + '\t' + output + '\n')
    output_file.close()
    utils_coco.convert(out_test_filename, eval_test_filename)
    eval_coco.eval_coco(args.cocotest, eval_test_filename) 
開發者ID:aistairc,項目名稱:seq2seq_temporal_attention,代碼行數:18,代碼來源:chainer_seq2seq_att.py

示例3: test_batch

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def test_batch(model, test_data, vocab, inv_vocab, modelfile_to_load):

    print('Testing (beam size = 1)...')
    print('print output to file: {}'.format(out_test_filename))
    serializers.load_hdf5(modelfile_to_load, model)
    batch_test = \
        utils_seq2seq.gen_batch_test(test_data, args.feature, params.batch_size_val, vocab, xp)
    caption_out = []
    output_file = open(out_test_filename, mode='w')
    for vid_batch_test, caption_batch_test, id_batch_test in batch_test:
        output_test = forward(model, params, vocab, inv_vocab,
                              vid_batch_test, caption_batch_test,
                              'test-on-train', args.batchsizeval)
        for ii in range(args.batchsizeval):
            caption_out.append({'image_id': id_batch_test[ii],
                                'caption': output_test[ii]})
            print('%s %s' % (id_batch_test[ii], output_test[ii]))
            output_file.write(id_batch_test[ii] + '\t' + output_test[ii] + '\n')
    output_file.close()
    with open(eval_test_filename, mode='w') as f:
        json.dump(caption_out, f)
    eval_coco.eval_coco(args.cocotest, eval_test_filename) 
開發者ID:aistairc,項目名稱:seq2seq_temporal_attention,代碼行數:24,代碼來源:chainer_seq2seq_att.py

示例4: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def __init__(self):
        # hyper parameters
        weight_file = "./yolov2_darknet.model"
        self.n_classes = 80
        self.n_boxes = 5
        self.detection_thresh = 0.5
        self.iou_thresh = 0.5
        self.labels = ["person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"]
        anchors = [[0.738768, 0.874946], [2.42204, 2.65704], [4.30971, 7.04493], [10.246, 4.59428], [12.6868, 11.8741]]

        # load model
        print("loading coco model...")
        yolov2 = YOLOv2(n_classes=self.n_classes, n_boxes=self.n_boxes)
        serializers.load_hdf5(weight_file, yolov2) # load saved model
        model = YOLOv2Predictor(yolov2)
        model.init_anchor(anchors)
        model.predictor.train = False
        model.predictor.finetune = False
        self.model = model 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:21,代碼來源:yolov2_darknet_predict.py

示例5: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def __init__(self):
        # hyper parameters
        weight_file = "./backup/yolov2_final_cpu.model"
        self.n_classes = 10
        self.n_boxes = 5
        self.detection_thresh = 0.3
        self.iou_thresh = 0.3
        self.label_file = "./data/label.txt"
        with open(self.label_file, "r") as f:
            self.labels = f.read().strip().split("\n")

        # load model
        print("loading animal model...")
        yolov2 = YOLOv2(n_classes=self.n_classes, n_boxes=self.n_boxes)
        model = YOLOv2Predictor(yolov2)
        serializers.load_hdf5(weight_file, model) # load saved model
        model.predictor.train = False
        model.predictor.finetune = False
        self.model = model 
開發者ID:leetenki,項目名稱:YOLOv2,代碼行數:21,代碼來源:yolov2_predict.py

示例6: load_model

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def load_model(self):
        model_fn = os.path.basename(self.args.model)
        self.model = imp.load_source(
            model_fn.split('.')[0], self.args.model).model
        self.model.train = False
        serializers.load_hdf5(self.args.param, self.model)
        if self.args.gpu >= 0:
            self.model.to_gpu() 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:10,代碼來源:invert.py

示例7: get_model_optimizer

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def get_model_optimizer(args):
    model = get_model(args)

    if 'opt' in args:
        # prepare optimizer
        if args.opt == 'MomentumSGD':
            optimizer = optimizers.MomentumSGD(lr=args.lr, momentum=0.9)
        elif args.opt == 'Adam':
            optimizer = optimizers.Adam(alpha=args.alpha)
        elif args.opt == 'AdaGrad':
            optimizer = optimizers.AdaGrad(lr=args.lr)
        else:
            raise Exception('No optimizer is selected')

        optimizer.setup(model)

        if args.opt == 'MomentumSGD':
            optimizer.add_hook(
                chainer.optimizer.WeightDecay(args.weight_decay))

        if args.resume_opt is not None:
            serializers.load_hdf5(args.resume_opt, optimizer)
            args.epoch_offset = int(
                re.search('epoch-([0-9]+)', args.resume_opt).groups()[0])

        return model, optimizer
    else:
        print('No optimizer generated.')
        return model 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:31,代碼來源:train.py

示例8: load_model

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def load_model(self, model_filename):
        """Load a network model form a file
        """
        serializers.load_hdf5(model_filename, self.model)
        copy_param.copy_param(target_link=self.model,
                              source_link=self.shared_model)
        opt_filename = model_filename + '.opt'
        if os.path.exists(opt_filename):
            print('WARNING: {0} was not found, so loaded only a model'.format(
                opt_filename))
            serializers.load_hdf5(model_filename + '.opt', self.optimizer) 
開發者ID:muupan,項目名稱:async-rl,代碼行數:13,代碼來源:a3c.py

示例9: save_and_load_hdf5

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def save_and_load_hdf5(src, dst):
    """Saves ``src`` to an HDF5 file and loads it to ``dst``.

    This is a short cut of :func:`save_and_load` using HDF5 de/serializers.

    Args:
        src: An object to save.
        dst: An object to load to.

    """
    save_and_load(src, dst, 'tmp.h5',
                  serializers.save_hdf5, serializers.load_hdf5) 
開發者ID:chainer,項目名稱:chainer,代碼行數:14,代碼來源:serializer.py

示例10: load

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def load(self):
		filename = "conv.model"
		if os.path.isfile(filename):
			serializers.load_hdf5(filename, self.conv)
			print "convolutional network loaded."
		if self.fcl_eliminated is False:
			filename = "fc.model"
			if os.path.isfile(filename):
				serializers.load_hdf5(filename, self.fc)
				print "fully-connected network loaded." 
開發者ID:musyoku,項目名稱:double-dqn,代碼行數:12,代碼來源:ddqn.py

示例11: load_inception_model

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def load_inception_model():
    infile = "%s/../common/inception/inception_score.model"%os.path.dirname(__file__)
    model = Inception()
    serializers.load_hdf5(infile, model)
    model.to_gpu()
    return model 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:8,代碼來源:evaluation.py

示例12: load_inception_model

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def load_inception_model():
    infile = "%s/inception/inception_score.model"%os.path.dirname(__file__)
    model = Inception()
    serializers.load_hdf5(infile, model)
    model.to_gpu()
    return model 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:8,代碼來源:evaluation.py

示例13: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def __init__(self,modelpath=None,mean='misc/ilsvrc_2012_mean.npy',labels='data/labels.txt',optimizer=None):
		super(NetworkInNetwork,self).__init__('NetworkInNetwork',in_size=227)

		self.func = deel.model.nin.NIN()
		if modelpath is not None:
			cs.load_hdf5("misc/"+modelpath,self.func)

		self.graph_generated=None

		xp = Deel.xp
		#ImageNet.mean_image = pickle.load(open(mean, 'rb'))
		ImageNet.mean_image = np.ndarray((3, 256, 256), dtype=xp.float32)
		ImageNet.mean_image[0] = 104
		ImageNet.mean_image[1] = 117
		ImageNet.mean_image[2] = 123
		ImageNet.in_size = self.func.insize

		self.labels = np.loadtxt(labels, str, delimiter="\t")

		self.t = ChainerTensor(Variable(Deel.xp.asarray([1.0])))

		if Deel.gpu>=0:
			self.func.to_gpu()


		if optimizer is None:
			self.optimizer = optimizers.Adam()
		self.optimizer.setup(self.func) 
開發者ID:uei,項目名稱:deel,代碼行數:30,代碼來源:nin.py

示例14: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def __init__(self,modelpath='bvlc_googlenet.caffemodel',
					mean='ilsvrc_2012_mean.npy',
					labels='misc/labels.txt',in_size=224):
		super(GoogLeNet,self).__init__('GoogLeNet',in_size)

		if os.path.splitext(modelpath)[1]==".caffemodel":
			self.func = LoadCaffeModel(modelpath)
			self.model = convert(self.func)
		else:
			self.func=None
			self.model = chainermodel.GoogLeNet()
			cs.load_hdf5(modelpath,self.model)

		xp = Deel.xp


		ImageNet.mean_image = np.ndarray((3, 256, 256), dtype=np.float32)
		ImageNet.mean_image[0] = 103.939
		ImageNet.mean_image[1] = 116.779
		ImageNet.mean_image[2] = 123.68
		ImageNet.in_size = in_size

		#print type(ImageNet.mean_image)
		self.labels = np.loadtxt(labels, str, delimiter="\t")
		self.batchsize = 1
		self.x_batch = xp.ndarray((self.batchsize, 3, self.in_size, self.in_size), dtype=np.float32)

		if Deel.gpu >=0:
			self.model = self.model.to_gpu(Deel.gpu)
		self.optimizer = optimizers.MomentumSGD(lr=0.01,momentum=0.9)
		#self.optimizer = optimizers.Adam()
		#self.optimizer.setup(self.func)
		self.optimizer.setup(self.model) 
開發者ID:uei,項目名稱:deel,代碼行數:35,代碼來源:googlenet.py

示例15: __init__

# 需要導入模塊: from chainer import serializers [as 別名]
# 或者: from chainer.serializers import load_hdf5 [as 別名]
def __init__(self,modelpath=None,mean='misc/ilsvrc_2012_mean.npy',labels='data/labels.txt',optimizer=None):
		super(RegionalNetworkInNetwork,self).__init__('RegionalNetworkInNetwork',in_size=227)

		self.func = deel.model.rnin.RNIN()
		if modelpath is not None:
			cs.load_hdf5("misc/"+modelpath,self.func)

		self.graph_generated=None

		xp = Deel.xp
		#ImageNet.mean_image = pickle.load(open(mean, 'rb'))
		ImageNet.mean_image = np.ndarray((3, 256, 256), dtype=xp.float32)
		ImageNet.mean_image[0] = 104
		ImageNet.mean_image[1] = 117
		ImageNet.mean_image[2] = 123
		ImageNet.in_size = self.func.insize

		self.labels = np.loadtxt(labels, str, delimiter="\t")

		self.t = ChainerTensor(Variable(Deel.xp.asarray([1.0])))

		if Deel.gpu>=0:
			self.func.to_gpu()


		if optimizer is None:
			self.optimizer = optimizers.Adam()
		self.optimizer.setup(self.func) 
開發者ID:uei,項目名稱:deel,代碼行數:30,代碼來源:rnin.py


注:本文中的chainer.serializers.load_hdf5方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。