當前位置: 首頁>>代碼示例>>Python>>正文


Python reporter.report_scope方法代碼示例

本文整理匯總了Python中chainer.reporter.report_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python reporter.report_scope方法的具體用法?Python reporter.report_scope怎麽用?Python reporter.report_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.reporter的用法示例。


在下文中一共展示了reporter.report_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        iterator = self.get_iterator('main')
        all_targets = self.get_all_targets()
        for model in all_targets.values():
            if hasattr(model, 'train'):
                model.train = False

        if self.eval_hook:
            self.eval_hook(self)
        it = copy.copy(iterator)
        summary = reporter_module.DictSummary()

        for batch in it:
            observation = {}
            with reporter_module.report_scope(observation):
                self.updater.forward(batch)
                self.updater.calc_loss()
            summary.add(observation)

        for model in all_targets.values():
            if hasattr(model, 'train'):
                model.train = True
        return summary.compute_mean() 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:25,代碼來源:extensions.py

示例2: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        val_iter = self.get_iterator("main")
        target = self.get_target("main")
        loss = 0
        count = 0
        for batch in copy.copy(val_iter):
            x, t = convert.concat_examples(batch, device=self.device, padding=(0, -1))
            xp = chainer.backends.cuda.get_array_module(x)
            state = None
            for i in six.moves.range(len(x[0])):
                state, loss_batch = target(state, x[:, i], t[:, i])
                non_zeros = xp.count_nonzero(x[:, i])
                loss += loss_batch.data * non_zeros
                count += int(non_zeros)
        # report validation loss
        observation = {}
        with reporter.report_scope(observation):
            reporter.report({"loss": float(loss / count)}, target)
        return observation 
開發者ID:espnet,項目名稱:espnet,代碼行數:21,代碼來源:lm.py

示例3: test_report_key

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def test_report_key(self, metrics_fun, compute_metrics):
        repo = chainer.Reporter()

        link = Regressor(predictor=DummyPredictor(),
                         metrics_fun=metrics_fun)
        link.compute_metrics = compute_metrics
        repo.add_observer('target', link)
        with repo:
            observation = {}
            with reporter.report_scope(observation):
                link(self.x, self.t)

        # print('observation ', observation)
        actual_keys = set(observation.keys())
        if compute_metrics:
            if metrics_fun is None:
                assert set(['target/loss']) == actual_keys
            elif isinstance(metrics_fun, dict):
                assert set(['target/loss', 'target/user_key']) == actual_keys
            elif callable(metrics_fun):
                assert set(['target/loss', 'target/metrics']) == actual_keys
            else:
                raise TypeError()
        else:
            assert set(['target/loss']) == actual_keys 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:27,代碼來源:test_regressor.py

示例4: test_report_key

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def test_report_key(self, metrics_fun, compute_metrics):
        repo = chainer.Reporter()

        link = Classifier(predictor=DummyPredictor(),
                          metrics_fun=metrics_fun)
        link.compute_metrics = compute_metrics
        repo.add_observer('target', link)
        with repo:
            observation = {}
            with reporter.report_scope(observation):
                link(self.x, self.t)

        # print('observation ', observation)
        actual_keys = set(observation.keys())
        if compute_metrics:
            if metrics_fun is None:
                assert set(['target/loss']) == actual_keys
            elif isinstance(metrics_fun, dict):
                assert set(['target/loss', 'target/user_key']) == actual_keys
            elif callable(metrics_fun):
                assert set(['target/loss', 'target/accuracy']) == actual_keys
            else:
                raise TypeError()
        else:
            assert set(['target/loss']) == actual_keys 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:27,代碼來源:test_classifier.py

示例5: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        iterator = self._iterators['main']
        eval_func = self.eval_func or self._targets['main']

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        # summary = reporter_module.DictSummary()
        summary = collections.defaultdict(list)

        for batch in it:
            observation = {}
            with reporter_module.report_scope(observation):
                in_arrays = self.converter(batch, self.device)
                with function.no_backprop_mode():
                    if isinstance(in_arrays, tuple):
                        eval_func(*in_arrays)
                    elif isinstance(in_arrays, dict):
                        eval_func(**in_arrays)
                    else:
                        eval_func(in_arrays)
            n_data = len(batch)
            summary['n'].append(n_data)
            # summary.add(observation)
            for k, v in observation.items():
                summary[k].append(v)

        mean = dict()
        ns = summary['n']
        del summary['n']
        for k, vs in summary.items():
            mean[k] = sum(v * n for v, n in zip(vs, ns)) / sum(ns)
        return mean
        # return summary.compute_mean() 
開發者ID:pfnet-research,項目名稱:contextual_augmentation,代碼行數:42,代碼來源:evaluator.py

示例6: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        bt = time.time()
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            observation = {}
            with reporter.report_scope(observation):
                for i in range(0, len(self.test_data), self.batch):
                    src, trg = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in trg])

                    src = [chainer.dataset.to_device(self.device, x)
                           for x in src]
                    ys = [y.tolist()
                          for y in self.model.translate(src, self.max_length)]
                    hypotheses.extend(ys)

                bleu = bleu_score.corpus_bleu(
                    references, hypotheses,
                    smoothing_function=bleu_score.SmoothingFunction().method1)
                reporter.report({'bleu': bleu}, self.model)
        et = time.time()

        if self.comm is not None:
            # This evaluator is called via chainermn.MultiNodeEvaluator
            for i in range(0, self.comm.size):
                print('BleuEvaluator::evaluate(): '
                      'took {:.3f} [s]'.format(et - bt))
                sys.stdout.flush()
                self.comm.mpi_comm.Barrier()
        else:
            # This evaluator is called from a conventional
            # Chainer exntension
            print('BleuEvaluator(single)::evaluate(): '
                  'took {:.3f} [s]'.format(et - bt))
            sys.stdout.flush()
        return observation 
開發者ID:chainer,項目名稱:chainer,代碼行數:39,代碼來源:seq2seq.py

示例7: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        bt = time.time()
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            observation = {}
            with reporter.report_scope(observation):
                for i in range(0, len(self.test_data), self.batch):
                    src, trg = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in trg])

                    src = [chainer.dataset.to_device(self.device, x)
                           for x in src]

                    if self.comm.rank == 0:
                        self.model.translate(src, self.max_length)

                    elif self.comm.rank == 1:
                        ys = [y.tolist()
                              for y in self.model.translate(
                                  src, self.max_length)]
                        hypotheses.extend(ys)

                if self.comm.rank == 1:
                    bleu = bleu_score.corpus_bleu(
                        references, hypotheses, smoothing_function=bleu_score.
                        SmoothingFunction().method1)
                    reporter.report({'bleu': bleu}, self.model)
        et = time.time()

        if self.comm.rank == 1:
            print('BleuEvaluator(single)::evaluate(): '
                  'took {:.3f} [s]'.format(et - bt))
            sys.stdout.flush()
        return observation 
開發者ID:chainer,項目名稱:chainer,代碼行數:37,代碼來源:seq2seq_mp1.py

示例8: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']
        eval_func = self.eval_func or target

        if self.eval_hook:
            self.eval_hook(self)
        it = copy.copy(iterator)
        summary = reporter_module.DictSummary()

        for _ in range(min(len(iterator.dataset) // iterator.batch_size, self.num_iterations)):
            batch = next(it, None)
            if batch is None:
                break

            observation = {}
            with reporter_module.report_scope(observation), chainer.using_config('train', False), chainer.using_config('enable_backprop', False):
                in_arrays = self.converter(batch, self.device)
                if isinstance(in_arrays, tuple):
                    eval_func(*in_arrays)
                elif isinstance(in_arrays, dict):
                    eval_func(**in_arrays)
                else:
                    eval_func(in_arrays)

            summary.add(observation)

        return summary.compute_mean() 
開發者ID:Bartzi,項目名稱:see,代碼行數:30,代碼來源:train_utils.py

示例9: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            target.predict, it)
        # delete unused iterators explicitly
        del in_values

        points, labels, scores = out_values
        gt_points, gt_labels = rest_values

        result = eval_projected_3d_bbox_single(
            points, scores, gt_points,
            self.vertex, self.intrinsics, diam=self.diam)
        report = result

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation 
開發者ID:chainer,項目名稱:models,代碼行數:29,代碼來源:projected_3d_bbox_evaluator.py

示例10: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            self.predict_func, it)
        # delete unused iterators explicitly
        del in_values

        pred_labels, pred_scores = out_values
        gt_labels, = rest_values

        result = eval_multi_label_classification(
            pred_labels, pred_scores, gt_labels)

        report = {'map': result['map']}

        if self.label_names is not None:
            for l, label_name in enumerate(self.label_names):
                try:
                    report['ap/{:s}'.format(label_name)] = result['ap'][l]
                except IndexError:
                    report['ap/{:s}'.format(label_name)] = np.nan

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation 
開發者ID:chainer,項目名稱:models,代碼行數:36,代碼來源:multi_label_classification_evaluator.py

示例11: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        summary = reporter.DictSummary()
        eval_func = self.eval_func or self._targets['main']

        observation = {}
        with reporter.report_scope(observation):
            # we always use the same array for testing, since this is only an example ;)
            data = eval_func.net.xp.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], dtype='int32')
            eval_func(data=data, label=data)

        summary.add(observation)
        return summary.compute_mean() 
開發者ID:chainer,項目名稱:models,代碼行數:14,代碼來源:copy_transformer_eval_function.py

示例12: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        target = self._targets['main']
        if self.comm is not None and self.comm.rank != 0:
            apply_to_iterator(target.predict, None, comm=self.comm)
            return {}
        iterator = self._iterators['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            target.predict, it, comm=self.comm)
        # delete unused iterators explicitly
        del in_values

        pred_labels, = out_values
        gt_labels, = rest_values

        result = eval_semantic_segmentation(pred_labels, gt_labels)

        report = {'miou': result['miou'],
                  'pixel_accuracy': result['pixel_accuracy'],
                  'mean_class_accuracy': result['mean_class_accuracy']}

        if self.label_names is not None:
            for l, label_name in enumerate(self.label_names):
                try:
                    report['iou/{:s}'.format(label_name)] = result['iou'][l]
                    report['class_accuracy/{:s}'.format(label_name)] =\
                        result['class_accuracy'][l]
                except IndexError:
                    report['iou/{:s}'.format(label_name)] = np.nan
                    report['class_accuracy/{:s}'.format(label_name)] = np.nan

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation 
開發者ID:chainer,項目名稱:chainercv,代碼行數:43,代碼來源:semantic_segmentation_evaluator.py

示例13: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        target = self._targets['main']
        if self.comm is not None and self.comm.rank != 0:
            apply_to_iterator(target.predict, None, comm=self.comm)
            return {}

        iterator = self._iterators['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            target.predict, it, comm=self.comm)
        # delete unused iterators explicitly
        del in_values

        pred_masks, pred_labels, pred_scores = out_values
        gt_masks, gt_labels = rest_values

        result = eval_instance_segmentation_voc(
            pred_masks, pred_labels, pred_scores,
            gt_masks, gt_labels,
            iou_thresh=self.iou_thresh,
            use_07_metric=self.use_07_metric)

        report = {'map': result['map']}

        if self.label_names is not None:
            for l, label_name in enumerate(self.label_names):
                try:
                    report['ap/{:s}'.format(label_name)] = result['ap'][l]
                except IndexError:
                    report['ap/{:s}'.format(label_name)] = np.nan

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation 
開發者ID:chainer,項目名稱:chainercv,代碼行數:43,代碼來源:instance_segmentation_voc_evaluator.py

示例14: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        """Main evaluate routine for CustomEvaluator."""
        iterator = self._iterators["main"]

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, "reset"):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        summary = reporter_module.DictSummary()

        self.model.eval()
        with torch.no_grad():
            for batch in it:
                x = _recursive_to(batch, self.device)
                observation = {}
                with reporter_module.report_scope(observation):
                    # read scp files
                    # x: original json with loaded features
                    #    will be converted to chainer variable later
                    if self.ngpu == 0:
                        self.model(*x)
                    else:
                        # apex does not support torch.nn.DataParallel
                        data_parallel(self.model, x, range(self.ngpu))

                summary.add(observation)
        self.model.train()

        return summary.compute_mean() 
開發者ID:espnet,項目名稱:espnet,代碼行數:36,代碼來源:asr.py

示例15: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report_scope [as 別名]
def evaluate(self):
        """Evaluate the model."""
        val_iter = self.get_iterator("main")
        loss = 0
        nll = 0
        count = 0
        self.model.eval()
        with torch.no_grad():
            for batch in copy.copy(val_iter):
                x, t = concat_examples(batch, device=self.device[0], padding=(0, -100))
                if self.device[0] == -1:
                    l, n, c = self.model(x, t)
                else:
                    # apex does not support torch.nn.DataParallel
                    l, n, c = data_parallel(self.model, (x, t), self.device)
                loss += float(l.sum())
                nll += float(n.sum())
                count += int(c.sum())
        self.model.train()
        # report validation loss
        observation = {}
        with reporter.report_scope(observation):
            reporter.report({"loss": loss}, self.model.reporter)
            reporter.report({"nll": nll}, self.model.reporter)
            reporter.report({"count": count}, self.model.reporter)
        return observation 
開發者ID:espnet,項目名稱:espnet,代碼行數:28,代碼來源:lm.py


注:本文中的chainer.reporter.report_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。