當前位置: 首頁>>代碼示例>>Python>>正文


Python reporter.report方法代碼示例

本文整理匯總了Python中chainer.reporter.report方法的典型用法代碼示例。如果您正苦於以下問題:Python reporter.report方法的具體用法?Python reporter.report怎麽用?Python reporter.report使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.reporter的用法示例。


在下文中一共展示了reporter.report方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def forward(self, x, t):
        xp = cuda.get_array_module(x)
        y = self.predictor(x)
        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        batch_size = chainer.Variable(xp.array(t.size, xp.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        loss = -log_prob / batch_size
        reporter.report({'loss': loss}, self)
        if self.compute_accuracy:
            acc = accuracy.accuracy(y, xp.argmax(t, axis=1))
            reporter.report({'accuracy': acc}, self)
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:25,代碼來源:gen_mnist_mlp.py

示例2: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, xs, ts):
        _, ys, ems = self.forward(xs)
        # PIT loss
        loss, labels = batch_pit_loss(ys, ts)
        reporter.report({'loss_pit': loss}, self)
        report_diarization_error(ys, labels, self)
        # DPCL loss
        loss_dc = F.sum(
            F.stack([dc_loss(em, t) for (em, t) in zip(ems, ts)]))
        n_frames = np.sum([t.shape[0] for t in ts])
        loss_dc = loss_dc / (n_frames ** 2)
        reporter.report({'loss_dc': loss_dc}, self)
        # Multi-objective
        loss = (1 - self.dc_loss_ratio) * loss + self.dc_loss_ratio * loss_dc
        reporter.report({'loss': loss}, self)

        return loss 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:19,代碼來源:models.py

示例3: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        reporter.report({self.key: bleu}) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:seq2seq.py

示例4: forward

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def forward(self, imgs, captions):
        """Batch of images to a single loss."""
        imgs = Variable(imgs)
        if self.finetune_feat_extractor:
            img_feats = self.feat_extractor(imgs)
        else:
            # Extract features with the `train` configuration set to `False` in
            # order to basically skip the dropout regularizations. This is how
            # dropout is used during standard inference. Also, since we are not
            # going to optimize the feature extractor, we explicitly set the
            # backpropgation mode to not construct any computational graphs.
            with chainer.using_config('train', False), \
                    chainer.no_backprop_mode():
                img_feats = self.feat_extractor(imgs)

        loss = self.lang_model(img_feats, captions)

        # Report the loss so that it can be printed, logged and plotted by
        # other trainer extensions
        reporter.report({'loss': loss}, self)

        return loss 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:model.py

示例5: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, trainer):
        print('## Calculate BLEU')
        with chainer.no_backprop_mode():
            with chainer.using_config('train', False):
                references = []
                hypotheses = []
                for i in range(0, len(self.test_data), self.batch):
                    sources, targets = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in targets])

                    sources = [
                        chainer.dataset.to_device(self.device, x) for x in sources]
                    ys = [y.tolist()
                          for y in self.model.translate(sources, self.max_length)]
                    hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1) * 100
        print('BLEU:', bleu)
        reporter.report({self.key: bleu}) 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:23,代碼來源:seq2seq.py

示例6: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, x, labels):
        x = BatchTransform(self.model.mean)(x)
        x = self.xp.array(x)
        scores = self.model(x)

        B, n_class = scores.shape[:2]
        one_hot_labels = self.xp.zeros((B, n_class), dtype=np.int32)
        for i, label in enumerate(labels):
            one_hot_labels[i, label] = 1
        # sigmoid_cross_entropy normalizes the loss
        # by the size of batch and the number of classes.
        # It works better to remove the normalization factor
        # of the number of classes.
        loss = self.loss_scale * F.sigmoid_cross_entropy(
            scores, one_hot_labels)

        result = calc_accuracy(scores, labels)
        reporter.report({'loss': loss}, self)
        reporter.report({'accuracy': result['accuracy']}, self)
        reporter.report({'n_pred': result['n_pred']}, self)
        reporter.report({'n_pos': result['n_pos']}, self)
        return loss 
開發者ID:chainer,項目名稱:models,代碼行數:24,代碼來源:multi_label_classifier.py

示例7: report

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def report(self, loss_ctc_list, loss_att, acc, cer_ctc_list, cer, wer, mtl_loss):
        """Define a chainer reporter function."""
        # loss_ctc_list = [weighted CTC, CTC1, CTC2, ... CTCN]
        # cer_ctc_list = [weighted cer_ctc, cer_ctc_1, cer_ctc_2, ... cer_ctc_N]
        num_encs = len(loss_ctc_list) - 1
        reporter.report({"loss_ctc": loss_ctc_list[0]}, self)
        for i in range(num_encs):
            reporter.report({"loss_ctc{}".format(i + 1): loss_ctc_list[i + 1]}, self)
        reporter.report({"loss_att": loss_att}, self)
        reporter.report({"acc": acc}, self)
        reporter.report({"cer_ctc": cer_ctc_list[0]}, self)
        for i in range(num_encs):
            reporter.report({"cer_ctc{}".format(i + 1): cer_ctc_list[i + 1]}, self)
        reporter.report({"cer": cer}, self)
        reporter.report({"wer": wer}, self)
        logging.info("mtl loss:" + str(mtl_loss))
        reporter.report({"loss": mtl_loss}, self) 
開發者ID:espnet,項目名稱:espnet,代碼行數:19,代碼來源:e2e_asr_mulenc.py

示例8: evaluate

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def evaluate(self):
        val_iter = self.get_iterator("main")
        target = self.get_target("main")
        loss = 0
        count = 0
        for batch in copy.copy(val_iter):
            x, t = convert.concat_examples(batch, device=self.device, padding=(0, -1))
            xp = chainer.backends.cuda.get_array_module(x)
            state = None
            for i in six.moves.range(len(x[0])):
                state, loss_batch = target(state, x[:, i], t[:, i])
                non_zeros = xp.count_nonzero(x[:, i])
                loss += loss_batch.data * non_zeros
                count += int(non_zeros)
        # report validation loss
        observation = {}
        with reporter.report_scope(observation):
            reporter.report({"loss": float(loss / count)}, target)
        return observation 
開發者ID:espnet,項目名稱:espnet,代碼行數:21,代碼來源:lm.py

示例9: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, trainer):
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self.targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            with configuration.using_config('train', False):
                result = self.evaluate(trainer)

        reporter_module.report(result)
        return result 
開發者ID:takiyu,項目名稱:portrait_matting,代碼行數:20,代碼來源:portrait_vis_evaluator.py

示例10: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, x, t):
        h, t1, t2 = self.calc(x)
        cls_loss = functions.softmax_cross_entropy(h, t)
        reporter.report({'cls_loss': cls_loss}, self)

        loss = cls_loss
        # Enforce the transformation as orthogonal matrix
        if self.trans and self.trans_lam1 >= 0:
            trans_loss1 = self.trans_lam1 * calc_trans_loss(t1)
            reporter.report({'trans_loss1': trans_loss1}, self)
            loss = loss + trans_loss1
        if self.trans and self.trans_lam2 >= 0:
            trans_loss2 = self.trans_lam2 * calc_trans_loss(t2)
            reporter.report({'trans_loss2': trans_loss2}, self)
            loss = loss + trans_loss2
        reporter.report({'loss': loss}, self)

        if self.compute_accuracy:
            acc = functions.accuracy(h, t)
            reporter.report({'accuracy': acc}, self)
        return loss 
開發者ID:corochann,項目名稱:chainer-pointnet,代碼行數:23,代碼來源:pointnet_cls.py

示例11: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, xs, ys):
        concat_outputs = self.predict(xs)
        concat_truths = F.concat(ys, axis=0)

        loss = F.softmax_cross_entropy(concat_outputs, concat_truths)
        accuracy = F.accuracy(concat_outputs, concat_truths)
        reporter.report({'loss': loss.data}, self)
        reporter.report({'accuracy': accuracy.data}, self)
        return loss 
開發者ID:Pinafore,項目名稱:qb,代碼行數:11,代碼來源:nets.py

示例12: __call__

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def __call__(self, xs, ys):
        concat_outputs = self.forward(xs)
        concat_outputs = F.softmax(concat_outputs, axis=1)
        concat_truths = F.concat(ys, axis=0)
        loss = F.softmax_cross_entropy(concat_outputs, concat_truths)
        accuracy = F.accuracy(concat_outputs, concat_truths)
        reporter.report({'loss': loss.data}, self)
        reporter.report({'accuracy': accuracy.data}, self)
        return loss 
開發者ID:Pinafore,項目名稱:qb,代碼行數:11,代碼來源:nets.py

示例13: report_diarization_error

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def report_diarization_error(ys, labels, observer):
    """
    Reports diarization errors using chainer.reporter

    Args:
      ys: B-length list of predictions (Variable)
      labels: B-length list of labels (ndarray)
      observer: target link (chainer.Chain)
    """
    for y, t in zip(ys, labels):
        stats = calc_diarization_error(y.array, t)
        for key in stats:
            reporter.report({key: stats[key]}, observer) 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:15,代碼來源:models.py

示例14: calculate_loss

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def calculate_loss(self, input_chain, **args):
        seq_batch = sum(input_chain, [])
        t_out_concat = self.encode(seq_batch)
        seq_batch_mid = [seq[1:-1] for seq in seq_batch]
        seq_mid_concat = F.concat(seq_batch_mid, axis=0)
        n_tok = sum(len(s) for s in seq_batch_mid)
        loss = self.output_and_loss_from_concat(
            t_out_concat, seq_mid_concat,
            normalize=n_tok)
        reporter.report({'perp': self.xp.exp(loss.data)}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:contextual_augmentation,代碼行數:13,代碼來源:nets.py

示例15: calculate_loss_with_labels

# 需要導入模塊: from chainer import reporter [as 別名]
# 或者: from chainer.reporter import report [as 別名]
def calculate_loss_with_labels(self, seq_batch_with_labels):
        seq_batch, labels = seq_batch_with_labels
        t_out_concat = self.encode(seq_batch, labels=labels)
        seq_batch_mid = [seq[1:-1] for seq in seq_batch]
        seq_mid_concat = F.concat(seq_batch_mid, axis=0)
        n_tok = sum(len(s) for s in seq_batch_mid)
        loss = self.output_and_loss_from_concat(
            t_out_concat, seq_mid_concat,
            normalize=n_tok)
        reporter.report({'perp': self.xp.exp(loss.data)}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:contextual_augmentation,代碼行數:13,代碼來源:nets.py


注:本文中的chainer.reporter.report方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。