當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.RMSpropGraves方法代碼示例

本文整理匯總了Python中chainer.optimizers.RMSpropGraves方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.RMSpropGraves方法的具體用法?Python optimizers.RMSpropGraves怎麽用?Python optimizers.RMSpropGraves使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.optimizers的用法示例。


在下文中一共展示了optimizers.RMSpropGraves方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def __init__(self, n_history, n_act):
        print("Initializing DQN...")
        self.step = 0  # number of steps that DQN is updated
        self.n_act = n_act
        self.n_history = n_history  # Number of obervations used to construct the single state

        print("Model Building")
        self.model = ActionValue(n_history, n_act).to_gpu()
        self.model_target = copy.deepcopy(self.model)

        print("Initizlizing Optimizer")
        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.01)
        self.optimizer.setup(self.model)

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        hs = self.n_history
        ims = self.img_size
        self.replay_buffer = [np.zeros((self.data_size, hs, ims, ims), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.float32),
                  np.zeros((self.data_size, hs, ims, ims), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool)] 
開發者ID:ugo-nama-kun,項目名稱:DQN-chainer,代碼行數:24,代碼來源:dqn_agent.py

示例2: __init__

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def __init__(self, n_history, n_act):
        print("Initializing DQN...")
        self.step = 0  # number of steps that DQN is updated
        self.n_act = n_act
        self.n_history = n_history  # Number of obervations used to construct the single state

        print("Model Building")
        self.model = ActionValue(n_history, n_act)
        self.model_target = copy.deepcopy(self.model)

        print("Initizlizing Optimizer")
        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.01)
        self.optimizer.setup(self.model)

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        hs = self.n_history
        ims = self.img_size
        self.replay_buffer = [np.zeros((self.data_size, hs, ims, ims), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.float32),
                  np.zeros((self.data_size, hs, ims, ims), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool)] 
開發者ID:ugo-nama-kun,項目名稱:DQN-chainer,代碼行數:24,代碼來源:dqn_agent_cpu.py

示例3: _test_load_dqn

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def _test_load_dqn(self, gpu):
        q_func = links.Sequence(
            links.NatureDQNHead(),
            L.Linear(512, 4),
            DiscreteActionValue)

        opt = optimizers.RMSpropGraves(
            lr=2.5e-4, alpha=0.95, momentum=0.0, eps=1e-2)
        opt.setup(q_func)

        rbuf = replay_buffer.ReplayBuffer(100)

        explorer = explorers.LinearDecayEpsilonGreedy(
            start_epsilon=1.0, end_epsilon=0.1,
            decay_steps=10 ** 6,
            random_action_func=lambda: np.random.randint(4))

        agent = agents.DQN(q_func, opt, rbuf, gpu=gpu, gamma=0.99,
                           explorer=explorer, replay_start_size=50,
                           target_update_interval=10 ** 4,
                           clip_delta=True,
                           update_interval=4,
                           batch_accumulator='sum',
                           phi=lambda x: x)

        model, exists = download_model("DQN", "BreakoutNoFrameskip-v4",
                                       model_type=self.pretrained_type)
        agent.load(model)
        if os.environ.get('CHAINERRL_ASSERT_DOWNLOADED_MODEL_IS_CACHED'):
            assert exists 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:32,代碼來源:test_pretrained_models.py

示例4: create

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def create(self):
        return optimizers.RMSpropGraves(0.1) 
開發者ID:chainer,項目名稱:chainer,代碼行數:4,代碼來源:test_optimizers_by_linear_model.py

示例5: __init__

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def __init__(self, enable_controller=[0, 3, 4]):
        self.num_of_actions = len(enable_controller)
        self.enable_controller = enable_controller  # Default setting : "Pong"

        print "Initializing DQN..."
#	Initialization for Chainer 1.1.0 or older.
#        print "CUDA init"
#        cuda.init()

        print "Model Building"
        self.model = FunctionSet(
            l1=F.Convolution2D(4, 16, ksize=8, stride=4, wscale=np.sqrt(2)),
            l2=F.Convolution2D(16, 32, ksize=4, stride=2, wscale=np.sqrt(2)),
            l3=F.Linear(2592, 256),
            q_value=F.Linear(256, self.num_of_actions,
                             initialW=np.zeros((self.num_of_actions, 256),
                                               dtype=np.float32))
        ).to_gpu()

        print "Initizlizing Optimizer"
        self.optimizer = optimizers.RMSpropGraves(lr=0.0002, alpha=0.3, momentum=0.2)
        self.optimizer.setup(self.model.collect_parameters())

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.int8),
                  np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool)] 
開發者ID:ugo-nama-kun,項目名稱:DQN-chainer,代碼行數:31,代碼來源:dqn_agent_nips.py

示例6: __init__

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def __init__(self, enable_controller=[0, 3, 4]):
        self.num_of_actions = len(enable_controller)
        self.enable_controller = enable_controller  # Default setting : "Pong"

        print "Initializing DQN..."
#	Initialization of Chainer 1.1.0 or older.
#        print "CUDA init"
#        cuda.init()

        print "Model Building"
        self.model = FunctionSet(
            l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
            l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
            l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
            l4=F.Linear(3136, 512, wscale=np.sqrt(2)),
            q_value=F.Linear(512, self.num_of_actions,
                             initialW=np.zeros((self.num_of_actions, 512),
                                               dtype=np.float32))
        ).to_gpu()

        self.model_target = copy.deepcopy(self.model)

        print "Initizlizing Optimizer"
        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
        self.optimizer.setup(self.model.collect_parameters())

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.int8),
                  np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool)] 
開發者ID:ugo-nama-kun,項目名稱:DQN-chainer,代碼行數:34,代碼來源:dqn_agent_nature.py

示例7: setup_optimizer

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def setup_optimizer(self):
        optimizer = optimizers.RMSpropGraves(
            lr=self.args.start_lr, alpha=0.95, momentum=0.9, eps=1e-08)
        optimizer.setup(self)
        optimizer.add_hook(chainer.optimizer.GradientClipping(self.args.grad_clip))
        return optimizer 
開發者ID:soskek,項目名稱:der-network,代碼行數:8,代碼來源:dern.py

示例8: __init__

# 需要導入模塊: from chainer import optimizers [as 別名]
# 或者: from chainer.optimizers import RMSpropGraves [as 別名]
def __init__(self, use_gpu, enable_controller, dim):
		self.use_gpu = use_gpu
		self.num_of_actions = len(enable_controller)
		self.enable_controller = enable_controller
		self.dim = dim

		print("Initializing Q-Network...")

		hidden_dim = 256
		self.model = FunctionSet(
			l4=F.Linear(self.dim*self.hist_size, hidden_dim, wscale=np.sqrt(2)),
			q_value=F.Linear(hidden_dim, self.num_of_actions,
							 initialW=np.zeros((self.num_of_actions, hidden_dim),
											   dtype=np.float32))
		)
		if self.use_gpu >= 0:
			self.model.to_gpu()

		self.model_target = copy.deepcopy(self.model)

		self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
		self.optimizer.setup(self.model.collect_parameters())

		# History Data :  D=[s, a, r, s_dash, end_episode_flag]
		self.d = [np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
				  np.zeros(self.data_size, dtype=np.uint8),
				  np.zeros((self.data_size, 1), dtype=np.int8),
				  np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
				  np.zeros((self.data_size, 1), dtype=np.bool)] 
開發者ID:uei,項目名稱:deel,代碼行數:31,代碼來源:q_net.py


注:本文中的chainer.optimizers.RMSpropGraves方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。