當前位置: 首頁>>代碼示例>>Python>>正文


Python linear.Linear方法代碼示例

本文整理匯總了Python中chainer.links.connection.linear.Linear方法的典型用法代碼示例。如果您正苦於以下問題:Python linear.Linear方法的具體用法?Python linear.Linear怎麽用?Python linear.Linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.links.connection.linear的用法示例。


在下文中一共展示了linear.Linear方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size,
                 lateral_init=None, upward_init=None,
                 bias_init=0, forget_bias_init=0):
        super(LNStatelessLSTM, self).__init__(
            upward=linear.Linear(in_size, 4 * out_size, initialW=0),
            lateral=linear.Linear(out_size, 4 * out_size,
                                  initialW=0, nobias=True),
            upward_ln = LayerNormalization(),
            lateral_ln = LayerNormalization(),
            output_ln = LayerNormalization()
        )
        self.state_size = out_size
        self.lateral_init = lateral_init
        self.upward_init = upward_init
        self.bias_init = bias_init
        self.forget_bias_init = forget_bias_init

        if in_size is not None:
            self._initialize_params() 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:21,代碼來源:ln_lstm.py

示例2: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size=None, lateral_init=None,
                 upward_init=None, bias_init=None, forget_bias_init=None):
        if out_size is None:
            out_size, in_size = in_size, None

        super(LSTMBase, self).__init__()
        if bias_init is None:
            bias_init = 0
        if forget_bias_init is None:
            forget_bias_init = 1
        self.state_size = out_size
        self.lateral_init = lateral_init
        self.upward_init = upward_init
        self.bias_init = bias_init
        self.forget_bias_init = forget_bias_init

        with self.init_scope():
            self.upward = linear.Linear(in_size, 4 * out_size, initialW=0)
            self.lateral = linear.Linear(out_size, 4 * out_size, initialW=0,
                                         nobias=True)
            if in_size is not None:
                self._initialize_params() 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:24,代碼來源:StatelessLSTM.py

示例3: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size, init=None,
                 inner_init=None, bias_init=None):
        super(GRUBase, self).__init__()
        with self.init_scope():
            self.W_r = linear.Linear(
                in_size, out_size, initialW=init, initial_bias=bias_init)
            self.U_r = linear.Linear(
                out_size, out_size, initialW=inner_init,
                initial_bias=bias_init)
            self.W_z = linear.Linear(
                in_size, out_size, initialW=init, initial_bias=bias_init)
            self.U_z = linear.Linear(
                out_size, out_size, initialW=inner_init,
                initial_bias=bias_init)
            self.W = linear.Linear(
                in_size, out_size, initialW=init, initial_bias=bias_init)
            self.U = linear.Linear(
                out_size, out_size, initialW=inner_init,
                initial_bias=bias_init) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:gru.py

示例4: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size, c_ratio=0.5, h_ratio=0.5, **kwargs):
        if kwargs:
            argument.check_unexpected_kwargs(
                kwargs, train='train argument is not supported anymore. '
                'Use chainer.using_config')
            argument.assert_kwargs_empty(kwargs)

        super(StatefulZoneoutLSTM, self).__init__()
        self.state_size = out_size
        self.c_ratio = c_ratio
        self.h_ratio = h_ratio
        self.reset_state()

        with self.init_scope():
            self.upward = linear.Linear(in_size, 4 * out_size)
            self.lateral = linear.Linear(out_size, 4 * out_size, nobias=True) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:zoneoutlstm.py

示例5: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, n_units, n_inputs=None, init=None, bias_init=None):
        if n_inputs is None:
            n_inputs = n_units
        super(GRUBase, self).__init__(
            W_r_z_h=linear.Linear(n_inputs, n_units * 3, initialW=init, initial_bias=bias_init),
            U_r_z=linear.Linear(n_units, n_units * 2, initialW=init, initial_bias=bias_init),
            #             W_r=linear.Linear(n_inputs, n_units),
            #             U_r = linear.Linear(n_units, n_units),
            #             W_z=linear.Linear(n_inputs, n_units),
            #             U_z=linear.Linear(n_units, n_units),
            #             W=linear.Linear(n_inputs, n_units),
            U=linear.Linear(n_units, n_units),
        )
        self.n_units = n_units 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:16,代碼來源:faster_gru.py

示例6: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, pretrained_model, n_layers):
        super(ResNetLayers, self).__init__()

        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            kwargs = {'initialW': constant.Zero()}
        else:
            # employ default initializers used in the original paper
            kwargs = {'initialW': normal.HeNormal(scale=1.0)}

        if n_layers == 50:
            block = [3, 4, 6, 3]
        elif n_layers == 101:
            block = [3, 4, 23, 3]
        elif n_layers == 152:
            block = [3, 8, 36, 3]
        else:
            raise ValueError('The n_layers argument should be either 50, 101,'
                             ' or 152, but {} was given.'.format(n_layers))

        with self.init_scope():
            self.conv1 = Convolution2D(3, 64, 7, 2, 3, **kwargs)
            self.bn1 = BatchNormalization(64)
            self.res2 = BuildingBlock(block[0], 64, 64, 256, 1, **kwargs)
            self.res3 = BuildingBlock(block[1], 256, 128, 512, 2, **kwargs)
            self.res4 = BuildingBlock(block[2], 512, 256, 1024, 2, **kwargs)
            self.res5 = BuildingBlock(block[3], 1024, 512, 2048, 2, **kwargs)
            self.fc6 = Linear(2048, 1000)

        if pretrained_model and pretrained_model.endswith('.caffemodel'):
            _retrieve(n_layers, 'ResNet-{}-model.npz'.format(n_layers),
                      pretrained_model, self)
        elif pretrained_model:
            npz.load_npz(pretrained_model, self) 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:37,代碼來源:resnet_layer.py

示例7: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, pretrained_model='auto', n_layers=16):
        super(VGGLayers, self).__init__()
        kwargs = {}

        if n_layers not in [16, 19]:
            raise ValueError(
                'The n_layers argument should be either 16 or 19,'
                'but {} was given.'.format(n_layers)
            )

        with self.init_scope():
            self.conv1_1 = Convolution2D(3, 64, 3, 1, 1, **kwargs)
            self.conv1_2 = Convolution2D(64, 64, 3, 1, 1, **kwargs)
            self.conv2_1 = Convolution2D(64, 128, 3, 1, 1, **kwargs)
            self.conv2_2 = Convolution2D(128, 128, 3, 1, 1, **kwargs)
            self.conv3_1 = Convolution2D(128, 256, 3, 1, 1, **kwargs)
            self.conv3_2 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
            self.conv3_3 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
            self.conv4_1 = Convolution2D(256, 512, 3, 1, 1, **kwargs)
            self.conv4_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv4_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_1 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.fc6 = Linear(512 * 7 * 7, 4096, **kwargs)
            self.fc7 = Linear(4096, 4096, **kwargs)
            self.fc8 = Linear(4096, 1000, **kwargs)
            if n_layers == 19:
                self.conv3_4 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
                self.conv4_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
                self.conv5_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:33,代碼來源:chainer_chain.py

示例8: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, n_inputs, n_units):
        super(MGUBase, self).__init__()
        with self.init_scope():
            self.W_f = linear.Linear(n_inputs + n_units, n_units)
            self.W_h = linear.Linear(n_inputs + n_units, n_units) 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:mgu.py

示例9: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size):
        super(ChildSumTreeLSTM, self).__init__()
        with self.init_scope():
            self.W_x = linear.Linear(in_size, 4 * out_size)
            self.W_h_aio = linear.Linear(out_size, 3 * out_size, nobias=True)
            self.W_h_f = linear.Linear(out_size, out_size, nobias=True)

        self.in_size = in_size
        self.state_size = out_size 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:tree_lstm.py

示例10: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size):
        super(StatefulPeepholeLSTM, self).__init__()
        self.state_size = out_size
        self.reset_state()

        with self.init_scope():
            self.upward = linear.Linear(in_size, 4 * out_size)
            self.lateral = linear.Linear(out_size, 4 * out_size, nobias=True)
            self.peep_i = linear.Linear(out_size, out_size, nobias=True)
            self.peep_f = linear.Linear(out_size, out_size, nobias=True)
            self.peep_o = linear.Linear(out_size, out_size, nobias=True) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:peephole.py

示例11: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, pretrained_model, n_layers, downsample_fb=False):
        super(ResNetLayers, self).__init__()

        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            conv_kwargs = {'initialW': constant.Zero()}
        else:
            # employ default initializers used in the original paper
            conv_kwargs = {'initialW': normal.HeNormal(scale=1.0)}

        kwargs = conv_kwargs.copy()
        kwargs['downsample_fb'] = downsample_fb

        if n_layers == 50:
            block = [3, 4, 6, 3]
        elif n_layers == 101:
            block = [3, 4, 23, 3]
        elif n_layers == 152:
            block = [3, 8, 36, 3]
        else:
            raise ValueError('The n_layers argument should be either 50, 101,'
                             ' or 152, but {} was given.'.format(n_layers))

        with self.init_scope():
            self.conv1 = Convolution2D(3, 64, 7, 2, 3, **conv_kwargs)
            self.bn1 = BatchNormalization(64)
            self.res2 = BuildingBlock(block[0], 64, 64, 256, 1, **kwargs)
            self.res3 = BuildingBlock(block[1], 256, 128, 512, 2, **kwargs)
            self.res4 = BuildingBlock(block[2], 512, 256, 1024, 2, **kwargs)
            self.res5 = BuildingBlock(block[3], 1024, 512, 2048, 2, **kwargs)
            self.fc6 = Linear(2048, 1000)

        if pretrained_model and pretrained_model.endswith('.caffemodel'):
            _retrieve(n_layers, 'ResNet-{}-model.npz'.format(n_layers),
                      pretrained_model, self)
        elif pretrained_model:
            npz.load_npz(pretrained_model, self) 
開發者ID:chainer,項目名稱:chainer,代碼行數:40,代碼來源:resnet.py

示例12: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_out_size, nobias=False, activate=relu.relu,
                 init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1):
        super(Highway, self).__init__()
        self.activate = activate

        with self.init_scope():
            self.plain = linear.Linear(
                in_out_size, in_out_size, nobias=nobias,
                initialW=init_Wh, initial_bias=init_bh)
            self.transform = linear.Linear(
                in_out_size, in_out_size, nobias=nobias,
                initialW=init_Wt, initial_bias=init_bt) 
開發者ID:chainer,項目名稱:chainer,代碼行數:14,代碼來源:highway.py

示例13: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, in_size, out_size, pool_size,
                 initialW=None, initial_bias=0):
        super(Maxout, self).__init__()

        linear_out_size = out_size * pool_size

        if initialW is None or \
           numpy.isscalar(initialW) or \
           isinstance(initialW, initializer.Initializer):
            pass
        elif isinstance(initialW, chainer.get_array_types()):
            if initialW.ndim != 3:
                raise ValueError('initialW.ndim should be 3')
            initialW = initialW.reshape(linear_out_size, in_size)
        elif callable(initialW):
            initialW_orig = initialW

            def initialW(array):
                array.shape = (out_size, pool_size, in_size)
                initialW_orig(array)
                array.shape = (linear_out_size, in_size)

        if initial_bias is None or \
           numpy.isscalar(initial_bias) or \
           isinstance(initial_bias, initializer.Initializer):
            pass
        elif isinstance(initial_bias, chainer.get_array_types()):
            if initial_bias.ndim != 2:
                raise ValueError('initial_bias.ndim should be 2')
            initial_bias = initial_bias.reshape(linear_out_size)
        elif callable(initial_bias):
            initial_bias_orig = initial_bias

            def initial_bias(array):
                array.shape = (out_size, pool_size)
                initial_bias_orig(array)
                array.shape = linear_out_size,

        with self.init_scope():
            self.linear = linear.Linear(
                in_size, linear_out_size,
                nobias=initial_bias is None, initialW=initialW,
                initial_bias=initial_bias)

        self.out_size = out_size
        self.pool_size = pool_size 
開發者ID:chainer,項目名稱:chainer,代碼行數:48,代碼來源:maxout.py

示例14: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, pretrained_model='auto', n_layers=16):
        super(VGGLayers, self).__init__()
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            init = constant.Zero()
            kwargs = {'initialW': init, 'initial_bias': init}
        else:
            # employ default initializers used in the original paper
            kwargs = {
                'initialW': normal.Normal(0.01),
                'initial_bias': constant.Zero(),
            }

        if n_layers not in [16, 19]:
            raise ValueError(
                'The n_layers argument should be either 16 or 19, '
                'but {} was given.'.format(n_layers)
            )

        with self.init_scope():
            self.conv1_1 = Convolution2D(3, 64, 3, 1, 1, **kwargs)
            self.conv1_2 = Convolution2D(64, 64, 3, 1, 1, **kwargs)
            self.conv2_1 = Convolution2D(64, 128, 3, 1, 1, **kwargs)
            self.conv2_2 = Convolution2D(128, 128, 3, 1, 1, **kwargs)
            self.conv3_1 = Convolution2D(128, 256, 3, 1, 1, **kwargs)
            self.conv3_2 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
            self.conv3_3 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
            self.conv4_1 = Convolution2D(256, 512, 3, 1, 1, **kwargs)
            self.conv4_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv4_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_1 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.conv5_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
            self.fc6 = Linear(512 * 7 * 7, 4096, **kwargs)
            self.fc7 = Linear(4096, 4096, **kwargs)
            self.fc8 = Linear(4096, 1000, **kwargs)
            if n_layers == 19:
                self.conv3_4 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
                self.conv4_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
                self.conv5_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)

        if pretrained_model == 'auto':
            if n_layers == 16:
                _retrieve(
                    'VGG_ILSVRC_16_layers.npz',
                    'https://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
                    'caffe/VGG_ILSVRC_16_layers.caffemodel',
                    self)
            else:
                _retrieve(
                    'VGG_ILSVRC_19_layers.npz',
                    'http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
                    'caffe/VGG_ILSVRC_19_layers.caffemodel',
                    self)
        elif pretrained_model:
            npz.load_npz(pretrained_model, self) 
開發者ID:chainer,項目名稱:chainer,代碼行數:59,代碼來源:vgg.py

示例15: __init__

# 需要導入模塊: from chainer.links.connection import linear [as 別名]
# 或者: from chainer.links.connection.linear import Linear [as 別名]
def __init__(self, pretrained_model='auto'):
        super(GoogLeNet, self).__init__()

        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            kwargs = {'initialW': constant.Zero()}
        else:
            # employ default initializers used in BVLC. For more detail, see
            # https://github.com/chainer/chainer/pull/2424#discussion_r109642209
            kwargs = {'initialW': uniform.LeCunUniform(scale=1.0)}

        with self.init_scope():
            self.conv1 = Convolution2D(3, 64, 7, stride=2, pad=3, **kwargs)
            self.conv2_reduce = Convolution2D(64, 64, 1, **kwargs)
            self.conv2 = Convolution2D(64, 192, 3, stride=1, pad=1, **kwargs)
            self.inc3a = Inception(192, 64, 96, 128, 16, 32, 32)
            self.inc3b = Inception(256, 128, 128, 192, 32, 96, 64)
            self.inc4a = Inception(480, 192, 96, 208, 16, 48, 64)
            self.inc4b = Inception(512, 160, 112, 224, 24, 64, 64)
            self.inc4c = Inception(512, 128, 128, 256, 24, 64, 64)
            self.inc4d = Inception(512, 112, 144, 288, 32, 64, 64)
            self.inc4e = Inception(528, 256, 160, 320, 32, 128, 128)
            self.inc5a = Inception(832, 256, 160, 320, 32, 128, 128)
            self.inc5b = Inception(832, 384, 192, 384, 48, 128, 128)
            self.loss3_fc = Linear(1024, 1000, **kwargs)

            self.loss1_conv = Convolution2D(512, 128, 1, **kwargs)
            self.loss1_fc1 = Linear(2048, 1024, **kwargs)
            self.loss1_fc2 = Linear(1024, 1000, **kwargs)

            self.loss2_conv = Convolution2D(528, 128, 1, **kwargs)
            self.loss2_fc1 = Linear(2048, 1024, **kwargs)
            self.loss2_fc2 = Linear(1024, 1000, **kwargs)

        if pretrained_model == 'auto':
            _retrieve(
                'bvlc_googlenet.npz',
                'http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel',
                self)
        elif pretrained_model:
            npz.load_npz(pretrained_model, self) 
開發者ID:chainer,項目名稱:chainer,代碼行數:44,代碼來源:googlenet.py


注:本文中的chainer.links.connection.linear.Linear方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。