本文整理匯總了Python中chainer.links.NStepBiLSTM方法的典型用法代碼示例。如果您正苦於以下問題:Python links.NStepBiLSTM方法的具體用法?Python links.NStepBiLSTM怎麽用?Python links.NStepBiLSTM使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.links
的用法示例。
在下文中一共展示了links.NStepBiLSTM方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: collect_inits
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def collect_inits(lk, pathname):
res = []
for na, pa in lk.namedparams():
if isinstance(pa.data, type(None)):
continue
if na.count('/') == 1:
res.append((pathname + na, pa))
if isinstance(lk, L.BatchNormalization):
res.append((pathname + '/avg_mean', lk.avg_mean))
# TODO(satos) このままだと、nodeのテストは通るがResNetのテストがつらい
# lk.avg_var = np.ones(lk.avg_var.shape).astype(np.float32) * 4.0
res.append((pathname + '/avg_var', lk.avg_var))
elif isinstance(lk, L.NStepLSTM) or isinstance(lk, L.NStepBiLSTM):
# 先にこちらで集めてしまう
for i, clk in enumerate(lk.children()):
for param in clk.params():
res.append((pathname + '/%d/%s' % (i, param.name), param))
return res
for clk in lk.children():
res += collect_inits(clk, pathname + '/' + clk.name)
return res
示例2: setUp
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def setUp(self):
shape = (self.n_layers * 2, len(self.lengths), self.out_size)
if self.hidden_none:
self.h = self.c = numpy.zeros(shape, 'f')
else:
self.h = numpy.random.uniform(-1, 1, shape).astype('f')
self.c = numpy.random.uniform(-1, 1, shape).astype('f')
self.xs = [
numpy.random.uniform(-1, 1, (l, self.in_size)).astype('f')
for l in self.lengths]
self.gh = numpy.random.uniform(-1, 1, shape).astype('f')
self.gc = numpy.random.uniform(-1, 1, shape).astype('f')
self.gys = [
numpy.random.uniform(-1, 1, (l, self.out_size * 2)).astype('f')
for l in self.lengths]
self.rnn = links.NStepBiLSTM(
self.n_layers, self.in_size, self.out_size, self.dropout)
for layer in self.rnn:
for p in layer.params():
p.array[...] = numpy.random.uniform(-1, 1, p.shape)
self.rnn.cleargrads()
示例3: check_multi_gpu_forward
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def check_multi_gpu_forward(self, train=True):
# See chainer/chainer#6262
# NStepBiLSTM w/ cudnn & dropout should work on not current device
msg = None
rnn = self.rnn.copy('copy')
rnn.dropout = .5
with cuda.get_device_from_id(1):
if self.hidden_none:
h = None
else:
h = cuda.to_gpu(self.h)
c = cuda.to_gpu(self.c)
xs = [cuda.to_gpu(x) for x in self.xs]
with testing.assert_warns(DeprecationWarning):
rnn = rnn.to_gpu()
with cuda.get_device_from_id(0),\
chainer.using_config('train', train),\
chainer.using_config('use_cudnn', 'always'):
try:
rnn(h, c, xs)
except Exception as e:
msg = e
assert msg is None
示例4: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self, indim, outdim, normfac, fl=400, fs=80, fftl=512, fbsize=400):
self.indim = indim
self.outdim = outdim
self.fl = fl
self.fs = fs
self.fftl = fftl
self.fbsize = fbsize
self.normfac = {'input' : {'mean' : cuda.to_gpu(normfac['input']['mean']),
'std' : cupy.fmax(cuda.to_gpu(normfac['input']['std']), 1.0E-6)},
'output' : {'mean' : cuda.to_gpu(normfac['output']['mean']),
'std' : cupy.fmax(cuda.to_gpu(normfac['output']['std']), 1.0E-6)}}
super(Model, self).__init__()
with self.init_scope():
self.lx1 = L.NStepBiLSTM(1, self.indim, self.indim//2, 0.0)
self.lx2 = L.Convolution2D(1, self.indim, (5, self.indim), (1, 1), (2, 0))
self.ly1 = L.NStepLSTM(3, self.fbsize+self.indim, 256, 0.0)
self.ly2 = L.Linear(256, self.outdim)
示例5: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self, ch):
super(Link_NStepBiLSTM, self).__init__(L.NStepBiLSTM(1, 1, 1, 0))
# code.InteractiveConsole({'ch': ch}).interact()
hd = ch.children().__next__()
if not(hd.w0 is None):
self.n_in = hd.w0.shape[1]
else:
self.n_in = None
self.out_size = ch.out_size
self.n_layers = ch.n_layers
self.dropout = ch.dropout
self.ws = []
self.bs = []
for i in range(self.n_layers * 2):
ws = []
bs = []
for j in range(8):
ws.append(helper.make_tensor_value_info(
('/%d/w%d' % (i, j)), TensorProto.FLOAT, ["TODO"]))
bs.append(helper.make_tensor_value_info(
('/%d/b%d' % (i, j)), TensorProto.FLOAT, ["TODO"]))
self.ws.append(ws)
self.bs.append(bs)
示例6: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self, idim, elayers, cdim, hdim, dropout):
super(BLSTM, self).__init__()
with self.init_scope():
self.nblstm = L.NStepBiLSTM(elayers, idim, cdim, dropout)
self.l_last = L.Linear(cdim * 2, hdim)
示例7: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self, n_layer, n_in, n_out):
super(A, self).__init__()
with self.init_scope():
self.l1 = L.NStepBiLSTM(n_layer, n_in, n_out, 0.1)
示例8: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self,
n_speakers=4,
dropout=0.25,
in_size=513,
hidden_size=256,
n_layers=1,
embedding_layers=1,
embedding_size=20,
dc_loss_ratio=0.5,
):
""" BLSTM-based diarization model.
Args:
n_speakers (int): Number of speakers in recording
dropout (float): dropout ratio
in_size (int): Dimension of input feature vector
hidden_size (int): Number of hidden units in LSTM
n_layers (int): Number of LSTM layers after embedding
embedding_layers (int): Number of LSTM layers for embedding
embedding_size (int): Dimension of embedding vector
dc_loss_ratio (float): mixing parameter for DPCL loss
"""
super(BLSTMDiarization, self).__init__()
with self.init_scope():
self.bi_lstm1 = L.NStepBiLSTM(
n_layers, hidden_size * 2, hidden_size, dropout)
self.bi_lstm_emb = L.NStepBiLSTM(
embedding_layers, in_size, hidden_size, dropout)
self.linear1 = L.Linear(hidden_size * 2, n_speakers)
self.linear2 = L.Linear(hidden_size * 2, embedding_size)
self.dc_loss_ratio = dc_loss_ratio
self.n_speakers = n_speakers
示例9: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import NStepBiLSTM [as 別名]
def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"):
super(RNNP, self).__init__()
bidir = typ[0] == "b"
if bidir:
rnn = L.NStepBiLSTM if "lstm" in typ else L.NStepBiGRU
else:
rnn = L.NStepLSTM if "lstm" in typ else L.NStepGRU
rnn_label = "birnn" if bidir else "rnn"
with self.init_scope():
for i in six.moves.range(elayers):
if i == 0:
inputdim = idim
else:
inputdim = hdim
_cdim = 2 * cdim if bidir else cdim
# bottleneck layer to merge
setattr(
self, "{}{:d}".format(rnn_label, i), rnn(1, inputdim, cdim, dropout)
)
setattr(self, "bt%d" % i, L.Linear(_cdim, hdim))
self.elayers = elayers
self.rnn_label = rnn_label
self.cdim = cdim
self.subsample = subsample
self.typ = typ
self.bidir = bidir