當前位置: 首頁>>代碼示例>>Python>>正文


Python links.Linear方法代碼示例

本文整理匯總了Python中chainer.links.Linear方法的典型用法代碼示例。如果您正苦於以下問題:Python links.Linear方法的具體用法?Python links.Linear怎麽用?Python links.Linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.links的用法示例。


在下文中一共展示了links.Linear方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self, n_actions, max_episode_steps):
        super().__init__()
        with self.init_scope():
            self.embed = L.EmbedID(max_episode_steps + 1, 3136)
            self.image2hidden = chainerrl.links.Sequence(
                L.Convolution2D(None, 32, 8, stride=4),
                F.relu,
                L.Convolution2D(None, 64, 4, stride=2),
                F.relu,
                L.Convolution2D(None, 64, 3, stride=1),
                functools.partial(F.reshape, shape=(-1, 3136)),
            )
            self.hidden2out = chainerrl.links.Sequence(
                L.Linear(None, 512),
                F.relu,
                L.Linear(None, n_actions),
                DiscreteActionValue,
            ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:train_dqn_batch_grasping.py

示例2: parse_arch

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def parse_arch(arch, n_actions):
    if arch == 'nature':
        return links.Sequence(
            links.NatureDQNHead(),
            L.Linear(512, n_actions),
            DiscreteActionValue)
    elif arch == 'doubledqn':
        return links.Sequence(
            links.NatureDQNHead(),
            L.Linear(512, n_actions, nobias=True),
            SingleSharedBias(),
            DiscreteActionValue)
    elif arch == 'nips':
        return links.Sequence(
            links.NIPSDQNHead(),
            L.Linear(256, n_actions),
            DiscreteActionValue)
    elif arch == 'dueling':
        return DuelingDQN(n_actions)
    else:
        raise RuntimeError('Not supported architecture: {}'.format(arch)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:train_dqn_batch_ale.py

示例3: make_model

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def make_model(self, env):
        n_dim_obs = env.observation_space.low.size
        n_dim_action = env.action_space.low.size
        n_hidden_channels = 50
        policy = Sequence(
            L.Linear(n_dim_obs, n_hidden_channels),
            F.relu,
            L.Linear(n_hidden_channels, n_hidden_channels),
            F.relu,
            L.LSTM(n_hidden_channels, n_hidden_channels),
            policies.FCGaussianPolicy(
                n_input_channels=n_hidden_channels,
                action_size=n_dim_action,
                min_action=env.action_space.low,
                max_action=env.action_space.high)
        )

        q_func = q_function.FCLSTMSAQFunction(
            n_dim_obs=n_dim_obs,
            n_dim_action=n_dim_action,
            n_hidden_layers=2,
            n_hidden_channels=n_hidden_channels)

        return chainer.Chain(policy=policy, q_function=q_func) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:26,代碼來源:basetest_pgt.py

示例4: make_q_func

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def make_q_func(self, env):
        obs_size = env.observation_space.low.size
        hidden_size = 64
        return iqn.StatelessRecurrentImplicitQuantileQFunction(
            psi=chainerrl.links.StatelessRecurrentSequential(
                L.Linear(obs_size, hidden_size),
                F.relu,
                L.NStepRNNTanh(1, hidden_size, hidden_size, 0),
            ),
            phi=chainerrl.links.Sequence(
                chainerrl.agents.iqn.CosineBasisLinear(32, hidden_size),
                F.relu,
            ),
            f=L.Linear(hidden_size, env.action_space.n,
                       initialW=chainer.initializers.LeCunNormal(1e-1)),
        ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_double_iqn.py

示例5: test_manual

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def test_manual(self):
        link1 = L.Linear(2, 3)
        link2 = L.Linear(2, 5)
        link3 = chainer.Sequential(
            L.Linear(2, 7),
            F.tanh,
        )
        plink = Branched(link1, link2, link3)
        x = np.zeros((self.batch_size, 2), dtype=np.float32)
        pout = plink(x)
        self.assertIsInstance(pout, tuple)
        self.assertEqual(len(pout), 3)
        out1 = link1(x)
        out2 = link2(x)
        out3 = link3(x)
        np.testing.assert_allclose(pout[0].array, out1.array)
        np.testing.assert_allclose(pout[1].array, out2.array)
        np.testing.assert_allclose(pout[2].array, out3.array) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:test_branched.py

示例6: test

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def test(self):
        # Check if it can properly detect recurrent child links
        link = stateless_recurrent.StatelessRecurrentChainList(
            L.Linear(3, 4),
            L.NStepLSTM(1, 3, 2, 0),
            L.Linear(4, 5),
            stateless_recurrent.StatelessRecurrentChainList(
                L.NStepRNNTanh(1, 2, 5, 0),
            ),
        )
        self.assertEqual(len(link.recurrent_children), 2)
        self.assertIs(link.recurrent_children[0], link[1])
        self.assertIs(link.recurrent_children[1], link[3])
        self.assertEqual(len(link.recurrent_children[1].recurrent_children), 1)
        self.assertIs(
            link.recurrent_children[1].recurrent_children[0], link[3][0]) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_stateless_recurrent.py

示例7: _test

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def _test(self, gpu):

        model = chainer.Chain(
            a=L.Linear(1, 2, initialW=3, initial_bias=3),
            b=chainer.Chain(c=L.Linear(2, 3, initialW=4, initial_bias=4)),
        )
        if gpu >= 0:
            model.to_gpu(gpu)
            xp = model.xp
        else:
            xp = np
        optimizer = chainer.optimizers.SGD(self.lr)
        optimizer.setup(model)
        optimizer.add_hook(
            chainerrl.optimizers.NonbiasWeightDecay(
                rate=self.weight_decay_rate))
        optimizer.update(lambda: chainer.Variable(xp.asarray(0.0)))
        decay_factor = 1 - self.lr * self.weight_decay_rate
        xp.testing.assert_allclose(model.a.W.array, 3 * decay_factor)
        xp.testing.assert_allclose(model.a.b.array, 3)
        xp.testing.assert_allclose(model.b.c.W.array, 4 * decay_factor)
        xp.testing.assert_allclose(model.b.c.b.array, 4) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:24,代碼來源:test_nonbias_weight_decay.py

示例8: test_copy_param

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def test_copy_param(self):
        a = L.Linear(1, 5)
        b = L.Linear(1, 5)

        s = chainer.Variable(np.random.rand(1, 1).astype(np.float32))
        a_out = list(a(s).array.ravel())
        b_out = list(b(s).array.ravel())
        self.assertNotEqual(a_out, b_out)

        # Copy b's parameters to a
        copy_param.copy_param(a, b)

        a_out_new = list(a(s).array.ravel())
        b_out_new = list(b(s).array.ravel())
        self.assertEqual(a_out_new, b_out)
        self.assertEqual(b_out_new, b_out) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:18,代碼來源:test_copy_param.py

示例9: test_soft_copy_param

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def test_soft_copy_param(self):
        a = L.Linear(1, 5)
        b = L.Linear(1, 5)

        a.W.array[:] = 0.5
        b.W.array[:] = 1

        # a = (1 - tau) * a + tau * b
        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(a.W.array, np.full(a.W.shape, 0.55))
        np.testing.assert_almost_equal(b.W.array, np.full(b.W.shape, 1.0))

        copy_param.soft_copy_param(target_link=a, source_link=b, tau=0.1)

        np.testing.assert_almost_equal(a.W.array, np.full(a.W.shape, 0.595))
        np.testing.assert_almost_equal(b.W.array, np.full(b.W.shape, 1.0)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:test_copy_param.py

示例10: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self, n_input_channels, n_dim_action, n_hidden_channels,
                 n_hidden_layers, action_space, scale_mu=True,
                 normalize_input=True):
        self.n_input_channels = n_input_channels
        self.n_hidden_layers = n_hidden_layers
        self.n_hidden_channels = n_hidden_channels

        assert action_space is not None
        self.scale_mu = scale_mu
        self.action_space = action_space

        super().__init__()
        with self.init_scope():
            assert n_hidden_layers >= 1
            self.hidden_layers = MLPBN(
                in_size=n_input_channels, out_size=n_hidden_channels,
                hidden_sizes=[n_hidden_channels] * (n_hidden_layers - 1),
                normalize_input=normalize_input)

            self.v = L.Linear(n_hidden_channels, 1)
            self.mu = L.Linear(n_hidden_channels, n_dim_action)
            self.mat_diag = L.Linear(n_hidden_channels, n_dim_action)
            non_diag_size = n_dim_action * (n_dim_action - 1) // 2
            if non_diag_size > 0:
                self.mat_non_diag = L.Linear(n_hidden_channels, non_diag_size) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:27,代碼來源:state_q_functions.py

示例11: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self, mu_link, sigma_scale=0.4):
        super(FactorizedNoisyLinear, self).__init__()
        self._kernel = None
        self.out_size = mu_link.out_size
        self.nobias = not ('/b' in [name for name, _ in mu_link.namedparams()])

        W_data = mu_link.W.array
        in_size = None if W_data is None else W_data.shape[1]
        device_id = mu_link._device_id

        with self.init_scope():
            self.mu = L.Linear(in_size, self.out_size, self.nobias,
                               initialW=LeCunUniform(1 / numpy.sqrt(3)))

            self.sigma = L.Linear(in_size, self.out_size, self.nobias,
                                  initialW=VarianceScalingConstant(
                                      sigma_scale),
                                  initial_bias=VarianceScalingConstant(
                                      sigma_scale))

        if device_id is not None:
            self.to_gpu(device_id) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:24,代碼來源:noisy_linear.py

示例12: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self, in_size, out_size, hidden_sizes, nonlinearity=F.relu,
                 last_wscale=1):
        self.in_size = in_size
        self.out_size = out_size
        self.hidden_sizes = hidden_sizes
        self.nonlinearity = nonlinearity

        super().__init__()
        with self.init_scope():
            if hidden_sizes:
                hidden_layers = []
                hidden_layers.append(L.Linear(in_size, hidden_sizes[0]))
                for hin, hout in zip(hidden_sizes, hidden_sizes[1:]):
                    hidden_layers.append(L.Linear(hin, hout))
                self.hidden_layers = chainer.ChainList(*hidden_layers)
                self.output = L.Linear(hidden_sizes[-1], out_size,
                                       initialW=LeCunNormal(last_wscale))
            else:
                self.output = L.Linear(in_size, out_size,
                                       initialW=LeCunNormal(last_wscale)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:22,代碼來源:mlp.py

示例13: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self):
        super(VGG_multi, self).__init__(
            conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
            conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),

            conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
            conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),

            conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
            conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),

            conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
            conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),

            conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),

            fc6=L.Linear(2048, 4096),
            fc7=L.Linear(4096, 4096),
            fc8=L.Linear(4096, 768),
        )
        self.train = True 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:27,代碼來源:VGG_multi.py

示例14: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self):
        super(VGG_single, self).__init__(
            conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
            conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),

            conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
            conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),

            conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
            conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),

            conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
            conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),

            conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),

            fc6=L.Linear(2048, 4096),
            fc7=L.Linear(4096, 4096),
            fc8=L.Linear(4096, 256),
        )
        self.train = True 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:27,代碼來源:VGG_single.py

示例15: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Linear [as 別名]
def __init__(self, obs_size, n_actions, n_hidden_channels=[1024,256]):
        super(QFunction,self).__init__()
        net = []
        inpdim = obs_size
        for i,n_hid in enumerate(n_hidden_channels):
            net += [ ('l{}'.format(i), L.Linear( inpdim, n_hid ) ) ]
            net += [ ('norm{}'.format(i), L.BatchNormalization( n_hid ) ) ]
            net += [ ('_act{}'.format(i), F.relu ) ]
            inpdim = n_hid

        net += [('output', L.Linear( inpdim, n_actions) )]

        with self.init_scope():
            for n in net:
                if not n[0].startswith('_'):
                    setattr(self, n[0], n[1])

        self.forward = net 
開發者ID:endgameinc,項目名稱:gym-malware,代碼行數:20,代碼來源:train_agent_chainer.py


注:本文中的chainer.links.Linear方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。