當前位置: 首頁>>代碼示例>>Python>>正文


Python links.EmbedID方法代碼示例

本文整理匯總了Python中chainer.links.EmbedID方法的典型用法代碼示例。如果您正苦於以下問題:Python links.EmbedID方法的具體用法?Python links.EmbedID怎麽用?Python links.EmbedID使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.links的用法示例。


在下文中一共展示了links.EmbedID方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_actions, max_episode_steps):
        super().__init__()
        with self.init_scope():
            self.embed = L.EmbedID(max_episode_steps + 1, 3136)
            self.image2hidden = chainerrl.links.Sequence(
                L.Convolution2D(None, 32, 8, stride=4),
                F.relu,
                L.Convolution2D(None, 64, 4, stride=2),
                F.relu,
                L.Convolution2D(None, 64, 3, stride=1),
                functools.partial(F.reshape, shape=(-1, 3136)),
            )
            self.hidden2out = chainerrl.links.Sequence(
                L.Linear(None, 512),
                F.relu,
                L.Linear(None, n_actions),
                DiscreteActionValue,
            ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:train_dqn_batch_grasping.py

示例2: block_embed

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def block_embed(embed, x, dropout=0.):
    """Embedding function followed by convolution

    Args:
        embed (callable): A :func:`~chainer.functions.embed_id` function
            or :class:`~chainer.links.EmbedID` link.
        x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): Input variable, which
            is a :math:`(B, L)`-shaped int array. Its first dimension
            :math:`(B)` is assumed to be the *minibatch dimension*.
            The second dimension :math:`(L)` is the length of padded
            sentences.
        dropout (float): Dropout ratio.

    Returns:
        ~chainer.Variable: Output variable. A float array with shape
        of :math:`(B, N, L, 1)`. :math:`(N)` is the number of dimensions
        of word embedding.

    """
    e = embed(x)
    e = F.dropout(e, ratio=dropout)
    e = F.transpose(e, (0, 2, 1))
    e = e[:, :, :, None]
    return e 
開發者ID:Pinafore,項目名稱:qb,代碼行數:27,代碼來源:nets.py

示例3: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, Vi, Ei, Hi, init_orth=False, use_bn_length=0, cell_type=rnn_cells.LSTMCell):
        gru_f = cell_type(Ei, Hi)
        gru_b = cell_type(Ei, Hi)

        log.info("constructing encoder [%s]" % (cell_type,))
        super(Encoder, self).__init__(
            emb=L.EmbedID(Vi, Ei),
            #             gru_f = L.GRU(Hi, Ei),
            #             gru_b = L.GRU(Hi, Ei)

            gru_f=gru_f,
            gru_b=gru_b
        )
        self.Hi = Hi

        if use_bn_length > 0:
            self.add_link("bn_f", BNList(Hi, use_bn_length))
#             self.add_link("bn_b", BNList(Hi, use_bn_length)) #TODO
        self.use_bn_length = use_bn_length

        if init_orth:
            ortho_init(self.gru_f)
            ortho_init(self.gru_b) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:encoders.py

示例4: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, V, d_model=512, n_heads=8, d_ff=2048, experimental_relu=False, dropout=None, nb_layers=6,
                 residual_mode="normal", no_normalize=False):
        super(Decoder, self).__init__(
            emb = L.EmbedID(V, d_model),
            encoding_layers = DecoderMultiLayer(d_model, n_heads, d_ff=d_ff,
                                                experimental_relu=experimental_relu, 
                                                dropout=dropout, nb_layers=nb_layers,
                                                residual_mode=residual_mode, no_normalize=no_normalize),
            logits_layer = L.Linear(d_model, V + 1)
        )
        
        self.dropout = dropout
        self.n_heads = n_heads
        self.d_model = d_model
        self.cached_pos_vect = None
        
        self.add_param("bos_encoding", (1, 1, d_model))
        self.bos_encoding.data[...] = np.random.randn(d_model)
        
        self.V = V
        self.eos_idx = V 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:23,代碼來源:decoder.py

示例5: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_layers, in_size, out_size, embed_size, hidden_size, proj_size, dropout=0.5):
        """Initialize encoder with structure parameters

        Args:
            n_layers (int): Number of layers.
            in_size (int): Dimensionality of input vectors.
            out_size (int): Dimensionality of output vectors.
            embed_size (int): Dimensionality of word embedding.
            hidden_size (int) : Dimensionality of hidden vectors.
            proj_size (int) : Dimensionality of projection before softmax.
            dropout (float): Dropout ratio.
        """
        super(LSTMDecoder, self).__init__(
            embed = L.EmbedID(in_size, embed_size),
            lstm = L.NStepLSTM(n_layers, embed_size, hidden_size, dropout),
            proj = L.Linear(hidden_size, proj_size),
            out = L.Linear(proj_size, out_size)
        )
        self.dropout = dropout
        for param in self.params():
            param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape) 
開發者ID:dialogtekgeek,項目名稱:DSTC6-End-to-End-Conversation-Modeling,代碼行數:23,代碼來源:lstm_decoder.py

示例6: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_layers, n_vocab, n_units, dropout=0.1):
        out_units = n_units // 3
        super(CNNEncoder, self).__init__(
            embed=L.EmbedID(n_vocab, n_units, ignore_label=-1,
                            initialW=embed_init),
            cnn_w3=L.Convolution2D(
                n_units, out_units, ksize=(3, 1), stride=1, pad=(2, 0),
                nobias=True),
            cnn_w4=L.Convolution2D(
                n_units, out_units, ksize=(4, 1), stride=1, pad=(3, 0),
                nobias=True),
            cnn_w5=L.Convolution2D(
                n_units, out_units, ksize=(5, 1), stride=1, pad=(4, 0),
                nobias=True),
            mlp=MLP(n_layers, out_units * 3, dropout)
        )
        self.out_units = out_units * 3
        self.dropout = dropout
        self.use_predict_embed = False 
開發者ID:pfnet-research,項目名稱:contextual_augmentation,代碼行數:21,代碼來源:nets.py

示例7: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, vocab, vocab_ngram_tokens, n_units, n_units_char, dropout,
                 subword):  # dropout ratio, zero indicates no dropout
        super(RNN, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(
                len(vocab_ngram_tokens.lst_words) + 2, n_units_char,
                initialW=I.Uniform(1. / n_units_char))  # ngram tokens embedding  plus 2 for OOV and end symbol.
            if 'lstm' in subword:
                self.mid = L.LSTM(n_units_char, n_units_char * 2)
            self.out = L.Linear(n_units_char * 2, n_units_char)  # the feed-forward output layer
            if 'bilstm' in subword:
                self.mid_b = L.LSTM(n_units_char, n_units_char * 2)
                self.out_b = L.Linear(n_units_char * 2, n_units_char)

            self.n_ngram = vocab_ngram_tokens.metadata["max_gram"] - vocab_ngram_tokens.metadata["min_gram"] + 1
            self.final_out = L.Linear(n_units * (self.n_ngram), n_units)

            self.dropout = dropout
            self.vocab = vocab
            self.vocab_ngram_tokens = vocab_ngram_tokens
            self.subword = subword 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:23,代碼來源:subword.py

示例8: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_layers, n_vocab, n_units, dropout=0.1, wv=None):
        super(RNNEncoder, self).__init__()
        with self.init_scope():
            if wv is None:
                self.embed = L.EmbedID(n_vocab, n_units, ignore_label=-1,
                                       initialW=embed_init)
            else:
                # TODO: this implementation was allowing for dynamic embeddings
                # think about how to support both continuous embeddings
                # and function pointers
                # self.embed = self.get_embed_from_wv
                self.embed = L.EmbedID(n_vocab, n_units, ignore_label=-1,
                                       initialW=wv)
            self.encoder = L.NStepLSTM(n_layers, n_units, n_units, dropout)
        self.n_layers = n_layers
        self.out_units = n_units
        self.dropout = dropout 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:19,代碼來源:nets.py

示例9: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(
            self,
            embed_dim: int,
            n_units: int=1000,
            gpu: int=-1,
    ):
        super(LSTM, self).__init__(
            embed=L.EmbedID(embed_dim, n_units),  # word embedding
            l1=L.Linear(n_units, n_units * 4),
            h1=L.Linear(n_units, n_units * 4),
            l2=L.Linear(n_units, n_units * 4),
            h2=L.Linear(n_units, n_units * 4),
            l3=L.Linear(n_units, embed_dim),
        )
        self.embed_dim = embed_dim
        self.n_units = n_units
        self.gpu = gpu 
開發者ID:kenkov,項目名稱:seq2seq,代碼行數:19,代碼來源:lstm.py

示例10: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, vocab_size, hidden_size, dropout_ratio, ignore_label):
        super(LSTMLanguageModel, self).__init__()
        with self.init_scope():
            self.embed_word = L.EmbedID(
                vocab_size,
                hidden_size,
                initialW=initializers.Normal(1.0),
                ignore_label=ignore_label
            )
            self.embed_img = L.Linear(
                hidden_size,
                initialW=initializers.Normal(0.01)
            )
            self.lstm = L.LSTM(hidden_size, hidden_size)
            self.out_word = L.Linear(
                hidden_size,
                vocab_size,
                initialW=initializers.Normal(0.01)
            )

        self.dropout_ratio = dropout_ratio 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:model.py

示例11: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_layers, n_vocab, n_units, dropout=0.1):
        out_units = n_units // 3
        super(CNNEncoder, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(n_vocab, n_units, ignore_label=-1,
                                   initialW=embed_init)
            self.cnn_w3 = L.Convolution2D(
                n_units, out_units, ksize=(3, 1), stride=1, pad=(2, 0),
                nobias=True)
            self.cnn_w4 = L.Convolution2D(
                n_units, out_units, ksize=(4, 1), stride=1, pad=(3, 0),
                nobias=True)
            self.cnn_w5 = L.Convolution2D(
                n_units, out_units, ksize=(5, 1), stride=1, pad=(4, 0),
                nobias=True)
            self.mlp = MLP(n_layers, out_units * 3, dropout)

        self.out_units = out_units * 3
        self.dropout = dropout 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:nets.py

示例12: setUp

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def setUp(self):

        class Model(chainer.Chain):

            def __init__(self, link, args, kwargs):
                super(Model, self).__init__()
                with self.init_scope():
                    self.l1 = link(*args, **kwargs)

            def __call__(self, x):
                return self.l1(x)

        self.model = Model(self.link, self.args, self.kwargs)
        if self.link is L.EmbedID:
            self.x = np.random.randint(0, self.args[0], size=self.in_shape)
            self.x = self.x.astype(self.in_type)
        else:
            self.x = input_generator.increasing(
                *self.in_shape, dtype=self.in_type) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:test_connections.py

示例13: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units,
                 max_length=50, dropout=0.2, width=3):
        init_emb = chainer.initializers.Normal(0.1)
        init_out = VarInNormal(1.)
        super(Seq2seq, self).__init__(
            embed_x=L.EmbedID(n_source_vocab, n_units, ignore_label=-1,
                              initialW=init_emb),
            embed_y=L.EmbedID(n_target_vocab, n_units, ignore_label=-1,
                              initialW=init_emb),
            embed_position_x=L.EmbedID(max_length, n_units,
                                       initialW=init_emb),
            embed_position_y=L.EmbedID(max_length, n_units,
                                       initialW=init_emb),
            encoder=ConvGLUEncoder(n_layers, n_units, width, dropout),
            decoder=ConvGLUDecoder(n_layers, n_units, width, dropout),
            W=L.Linear(n_units, n_target_vocab, initialW=init_out),
        )
        self.n_layers = n_layers
        self.n_units = n_units
        self.n_target_vocab = n_target_vocab
        self.max_length = max_length
        self.width = width
        self.dropout = dropout 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:25,代碼來源:net.py

示例14: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def __init__(self, vocab_size, embed_size, hidden_size, output_size):
        super(RNNModel, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(vocab_size, embed_size)
            self.rnn = L.LSTM(embed_size, hidden_size)
            self.linear = L.Linear(hidden_size, output_size) 
開發者ID:Pinafore,項目名稱:qb,代碼行數:8,代碼來源:main.py

示例15: sequence_embed

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import EmbedID [as 別名]
def sequence_embed(embed, xs, dropout=0.):
    """Efficient embedding function for variable-length sequences

    This output is equally to
    "return [F.dropout(embed(x), ratio=dropout) for x in xs]".
    However, calling the functions is one-shot and faster.

    Args:
        embed (callable): A :func:`~chainer.functions.embed_id` function
            or :class:`~chainer.links.EmbedID` link.
        xs (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): i-th element in the list is an input variable,
            which is a :math:`(L_i, )`-shaped int array.
        dropout (float): Dropout ratio.

    Returns:
        list of ~chainer.Variable: Output variables. i-th element in the
        list is an output variable, which is a :math:`(L_i, N)`-shaped
        float array. :math:`(N)` is the number of dimensions of word embedding.

    """
    x_len = [len(x) for x in xs]
    x_section = np.cumsum(x_len[:-1])
    ex = embed(F.concat(xs, axis=0))
    ex = F.dropout(ex, ratio=dropout)
    exs = F.split_axis(ex, x_section, 0)
    return exs 
開發者ID:Pinafore,項目名稱:qb,代碼行數:29,代碼來源:nets.py


注:本文中的chainer.links.EmbedID方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。