當前位置: 首頁>>代碼示例>>Python>>正文


Python links.Deconvolution2D方法代碼示例

本文整理匯總了Python中chainer.links.Deconvolution2D方法的典型用法代碼示例。如果您正苦於以下問題:Python links.Deconvolution2D方法的具體用法?Python links.Deconvolution2D怎麽用?Python links.Deconvolution2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.links的用法示例。


在下文中一共展示了links.Deconvolution2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self):
        super(FCN_32s, self).__init__(
            conv1_1=L.Convolution2D(3, 64, 3, pad=100),
            conv1_2=L.Convolution2D(64, 64, 3),
            conv2_1=L.Convolution2D(64, 128, 3),
            conv2_2=L.Convolution2D(128, 128, 3),
            conv3_1=L.Convolution2D(128, 256, 3),
            conv3_2=L.Convolution2D(256, 256, 3),
            conv4_1=L.Convolution2D(256, 512, 3),
            conv4_2=L.Convolution2D(512, 512, 3),
            conv4_3=L.Convolution2D(512, 512, 3),
            conv5_1=L.Convolution2D(512, 512, 3),
            conv5_2=L.Convolution2D(512, 512, 3),
            conv5_3=L.Convolution2D(512, 512, 3),
            fc6=L.Convolution2D(512, 4096, 7),
            fc7=L.Convolution2D(4096, 4096, 1),
            score_fr=L.Convolution2D(4096, 21, 1),
            upsample=L.Deconvolution2D(21, 21, 64, 32),
        )
        self.train = True 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:22,代碼來源:FCN_32s.py

示例2: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, n_class=21):
        self.train=True
        super(FCN32s, self).__init__(
            conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=100),
            conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
            conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
            conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
            conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
            conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
            conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
            fc6=L.Convolution2D(512, 4096, 7, stride=1, pad=0),
            fc7=L.Convolution2D(4096, 4096, 1, stride=1, pad=0),
            score_fr=L.Convolution2D(4096, n_class, 1, stride=1, pad=0,
                nobias=True, initialW=np.zeros((n_class, 4096, 1, 1))),
            upscore=L.Deconvolution2D(n_class, n_class, 64, stride=32, pad=0,
                nobias=True, initialW=f.bilinear_interpolation_kernel(n_class, n_class, ksize=64)),
        ) 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:25,代碼來源:fcn32s.py

示例3: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
        super(Generator, self).__init__()
        self.n_hidden = n_hidden
        self.ch = ch
        self.bottom_width = bottom_width

        with self.init_scope():
            w = chainer.initializers.Normal(wscale)
            self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,
                               initialW=w)
            self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
            self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
            self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
            self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
            self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
            self.bn1 = L.BatchNormalization(ch // 2)
            self.bn2 = L.BatchNormalization(ch // 4)
            self.bn3 = L.BatchNormalization(ch // 8) 
開發者ID:lanpa,項目名稱:tensorboardX,代碼行數:20,代碼來源:net.py

示例4: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, isize, nc, ngf, conv_init=None, bn_init=None):
        cngf, tisize = ngf // 2, 4
        while tisize != isize:
            cngf = cngf * 2
            tisize = tisize * 2

        layers = []
        # input is Z, going into a convolution
        layers.append(L.Deconvolution2D(None, cngf, ksize=4, stride=1, pad=0, initialW=conv_init, nobias=True))
        layers.append(L.BatchNormalization(cngf, initial_gamma=bn_init))
        layers.append(ReLU())
        csize, cndf = 4, cngf
        while csize < isize // 2:
            layers.append(L.Deconvolution2D(None, cngf // 2, ksize=4, stride=2, pad=1, initialW=conv_init, nobias=True))
            layers.append(L.BatchNormalization(cngf // 2, initial_gamma=bn_init))
            layers.append(ReLU())
            cngf = cngf // 2
            csize = csize * 2
        layers.append(L.Deconvolution2D(None, nc, ksize=4, stride=2, pad=1, initialW=conv_init, nobias=True))
        layers.append(Tanh())

        super(DCGAN_G, self).__init__(*layers) 
開發者ID:wuhuikai,項目名稱:GP-GAN,代碼行數:24,代碼來源:model.py

示例5: test_caffe_export_model

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def test_caffe_export_model(self):
        class Model(chainer.Chain):

            def __init__(self):
                super(Model, self).__init__()
                with self.init_scope():
                    self.l1 = L.Convolution2D(None, 1, 1, 1, 0, groups=1)
                    self.b2 = L.BatchNormalization(1, eps=1e-2)
                    self.l3 = L.Deconvolution2D(None, 1, 1, 1, 0, groups=1)
                    self.l4 = L.Linear(None, 1)

            def forward(self, x):
                h = F.relu(self.l1(x))
                h = self.b2(h)
                h = self.l3(h)
                return self.l4(h)

        assert_export_import_match(Model(), self.x) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_caffe.py

示例6: create_link

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def create_link(self, initializers):
        initialW, initial_bias = initializers

        if self.nobias:
            link = L.Deconvolution2D(
                self.in_channels, self.out_channels, self.ksize,
                stride=self.stride, pad=self.pad, nobias=self.nobias,
                dilate=self.dilate, groups=self.groups,
                initialW=initialW)
        else:
            link = L.Deconvolution2D(
                self.in_channels, self.out_channels, self.ksize,
                stride=self.stride, pad=self.pad, nobias=self.nobias,
                dilate=self.dilate, groups=self.groups,
                initialW=initialW,
                initial_bias=initial_bias)

        return link 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_deconvolution_2d.py

示例7: test_deconvolution

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def test_deconvolution(self):
        self.init_func()
        self.assertEqual(len(self.func.layers), 1)
        f = self.func.l1
        self.assertIsInstance(f, links.Deconvolution2D)
        for i in range(3):  # 3 == group
            in_slice = slice(i * 4, (i + 1) * 4)  # 4 == channels
            out_slice = slice(i * 2, (i + 1) * 2)  # 2 == num / group
            w = f.W.data[out_slice, in_slice]
            numpy.testing.assert_array_equal(
                w.flatten(), range(i * 32, (i + 1) * 32))

        numpy.testing.assert_array_equal(
            f.b.data, range(12))

        self.call(['x'], ['y'])
        self.mock.assert_called_once_with(self.inputs[0]) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:test_caffe_function.py

示例8: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, n_hidden=128, bottom_width=4, ch=512, wscale=0.02,
                 z_distribution="uniform", hidden_activation=F.relu, output_activation=F.tanh, use_bn=True):
        super(DCGANGenerator, self).__init__()
        self.n_hidden = n_hidden
        self.ch = ch
        self.bottom_width = bottom_width
        self.z_distribution = z_distribution
        self.hidden_activation = hidden_activation
        self.output_activation = output_activation
        self.use_bn = use_bn

        with self.init_scope():
            w = chainer.initializers.Normal(wscale)
            self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,
                               initialW=w)
            self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
            self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
            self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
            self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
            if self.use_bn:
                self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
                self.bn1 = L.BatchNormalization(ch // 2)
                self.bn2 = L.BatchNormalization(ch // 4)
                self.bn3 = L.BatchNormalization(ch // 8) 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:26,代碼來源:net.py

示例9: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, n_hidden=128, bottom_width=4, ch=512, wscale=0.02):
        super(Generator, self).__init__()
        self.n_hidden = n_hidden
        self.ch = ch
        self.bottom_width = bottom_width

        with self.init_scope():
            w = chainer.initializers.Normal(wscale)
            self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,
                               initialW=w)
            self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
            self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
            self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
            self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
            self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
            self.bn1 = L.BatchNormalization(ch // 2)
            self.bn2 = L.BatchNormalization(ch // 4)
            self.bn3 = L.BatchNormalization(ch // 8) 
開發者ID:pfnet-research,項目名稱:chainer-gan-lib,代碼行數:20,代碼來源:net.py

示例10: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, z_slow_dim, z_fast_dim, out_channels, bottom_width,
                 conv_ch=512, wscale=0.01):
        self.ch = conv_ch
        self.bottom_width = bottom_width
        slow_mid_dim = bottom_width * bottom_width * conv_ch // 2
        fast_mid_dim = bottom_width * bottom_width * conv_ch // 2
        super(VideoGeneratorInitUniform, self).__init__()
        w = chainer.initializers.Uniform(wscale)
        with self.init_scope():
            self.l0s = L.Linear(z_slow_dim, slow_mid_dim, initialW=w, nobias=True)
            self.l0f = L.Linear(z_fast_dim, fast_mid_dim, initialW=w, nobias=True)
            self.dc1 = L.Deconvolution2D(conv_ch, conv_ch // 2, 4, 2, 1, initialW=w, nobias=True)
            self.dc2 = L.Deconvolution2D(conv_ch // 2, conv_ch // 4, 4, 2, 1, initialW=w, nobias=True)
            self.dc3 = L.Deconvolution2D(conv_ch // 4, conv_ch // 8, 4, 2, 1, initialW=w, nobias=True)
            self.dc4 = L.Deconvolution2D(conv_ch // 8, conv_ch // 16, 4, 2, 1, initialW=w, nobias=True)
            self.dc5 = L.Deconvolution2D(conv_ch // 16, out_channels, 3, 1, 1, initialW=w, nobias=False)
            self.bn0s = L.BatchNormalization(slow_mid_dim)
            self.bn0f = L.BatchNormalization(fast_mid_dim)
            self.bn1 = L.BatchNormalization(conv_ch // 2)
            self.bn2 = L.BatchNormalization(conv_ch // 4)
            self.bn3 = L.BatchNormalization(conv_ch // 8)
            self.bn4 = L.BatchNormalization(conv_ch // 16) 
開發者ID:pfnet-research,項目名稱:tgan,代碼行數:24,代碼來源:video_generator.py

示例11: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False) -> None:
        super().__init__()
        self.bn = bn
        self.activation = activation
        self.dropout = dropout

        w = chainer.initializers.Normal(0.02)
        with self.init_scope():
            if sample == 'down':
                self.c = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w)
            elif sample == 'up':
                self.c = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w)
            else:
                self.c = L.Convolution2D(ch0, ch1, 1, 1, 0, initialW=w)
            if bn:
                self.batchnorm = L.BatchNormalization(ch1) 
開發者ID:Hiroshiba,項目名稱:become-yukarin,代碼行數:18,代碼來源:sr_model.py

示例12: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self):
        super(FastStyleNet, self).__init__(
            c1=L.Convolution2D(3, 32, 9, stride=1, pad=4),
            c2=L.Convolution2D(32, 64, 4, stride=2, pad=1),
            c3=L.Convolution2D(64, 128, 4,stride=2, pad=1),
            r1=ResidualBlock(128, 128),
            r2=ResidualBlock(128, 128),
            r3=ResidualBlock(128, 128),
            r4=ResidualBlock(128, 128),
            r5=ResidualBlock(128, 128),
            d1=L.Deconvolution2D(128, 64, 4, stride=2, pad=1),
            d2=L.Deconvolution2D(64, 32, 4, stride=2, pad=1),
            d3=L.Deconvolution2D(32, 3, 9, stride=1, pad=4),
            b1=L.BatchNormalization(32),
            b2=L.BatchNormalization(64),
            b3=L.BatchNormalization(128),
            b4=L.BatchNormalization(64),
            b5=L.BatchNormalization(32),
        ) 
開發者ID:yusuketomoto,項目名稱:chainer-fast-neuralstyle,代碼行數:21,代碼來源:net.py

示例13: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False):
        self.bn = bn
        self.activation = activation
        self.dropout = dropout
        layers = {}
        w = chainer.initializers.Normal(0.02)
        if sample=='down':
            layers['c'] = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w)
        elif sample=='up':
            layers['c'] = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w)
        elif sample=='up-nn':
            layers['c'] = NNConvolution2D(ch0, ch1, 2, 3, 1, 1, initialW=w)
        elif sample=='none':
            layers['c'] = L.Convolution2D(ch0, ch1, 3, 1, 1, initialW=w)
        elif sample=='none-5':
            layers['c'] = L.Convolution2D(ch0, ch1, 5, 1, 2, initialW=w)
        else:
            assert False, 'unknown sample {}'.format(sample)
        if bn:
            layers['batchnorm'] = L.BatchNormalization(ch1)
        super(CBR, self).__init__(**layers) 
開發者ID:mitaki28,項目名稱:pixcaler,代碼行數:23,代碼來源:net.py

示例14: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, in_channels, out_channels, mode='none', activation=F.leaky_relu, bn=False, dr=None):
        super(ConvBlock, self).__init__()
        initializer = chainer.initializers.GlorotUniform()
        self.activation = activation
        self.bn = bn
        self.dr = dr
        with self.init_scope():
            if mode == 'none':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=1, initialW=initializer, nobias=bn)
            elif mode == 'none-7':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=(7,7), stride=1, pad=(3,3), initialW=initializer, nobias=bn)
            elif mode == 'down':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn)
            elif mode == 'up':
                self.c = L.Deconvolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn)
            elif mode == 'full-down':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=4, stride=1, pad=0, initialW=initializer, nobias=bn)
            elif mode == 'frq':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn)
            elif mode == 'frq-down':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn)
                self.activation = lambda x: activation(_downsample(x))
            elif mode == 'frq-up':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn)
                self.activation = lambda x: activation(_upsample(x))
            elif mode == 'pad':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=2, initialW=initializer, nobias=bn)
            elif mode == 'trim':
                self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=0, initialW=initializer, nobias=bn)
            else:
                raise Exception('mode is missing')
            if bn:
                self.b = L.BatchNormalization(out_channels) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:35,代碼來源:block.py

示例15: __init__

# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Deconvolution2D [as 別名]
def __init__(self, in_ch, out_ch, ksize, stride, pad, nobias=False, gain=np.sqrt(2), lrmul=1):
        w = chainer.initializers.Normal(1.0/lrmul)  # equalized learning rate
        self.inv_c = gain * np.sqrt(1.0 / (in_ch))
        self.inv_c = self.inv_c * lrmul
        super(EqualizedDeconv2d, self).__init__()
        with self.init_scope():
            self.c = L.Deconvolution2D(in_ch, out_ch, ksize, stride, pad, initialW=w, nobias=nobias) 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:9,代碼來源:pggan.py


注:本文中的chainer.links.Deconvolution2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。