本文整理匯總了Python中chainer.links.Convolution2D方法的典型用法代碼示例。如果您正苦於以下問題:Python links.Convolution2D方法的具體用法?Python links.Convolution2D怎麽用?Python links.Convolution2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.links
的用法示例。
在下文中一共展示了links.Convolution2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.leaky_relu, mode='none', bn=False, dr=None):
super(ResBlock, self).__init__()
initializer = chainer.initializers.GlorotUniform()
initializer_sc = chainer.initializers.GlorotUniform()
self.activation = activation
self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None
self.learnable_sc = in_channels != out_channels
self.dr = dr
self.bn = bn
with self.init_scope():
self.c1 = L.Convolution2D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
self.c2 = L.Convolution2D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
if bn:
self.b1 = L.BatchNormalization(out_channels)
self.b2 = L.BatchNormalization(out_channels)
if self.learnable_sc:
self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
示例2: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.relu, mode='none', bn=True, dr=None):
super(ResBlock, self).__init__()
initializer = chainer.initializers.GlorotUniform()
initializer_sc = chainer.initializers.GlorotUniform()
self.activation = activation
self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None
self.learnable_sc = in_channels != out_channels
self.dr = dr
self.bn = bn
with self.init_scope():
self.c1 = L.Convolution1D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
self.c2 = L.Convolution1D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
if bn:
self.b1 = L.BatchNormalization(out_channels)
self.b2 = L.BatchNormalization(out_channels)
if self.learnable_sc:
self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
示例3: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, n_actions, max_episode_steps):
super().__init__()
with self.init_scope():
self.embed = L.EmbedID(max_episode_steps + 1, 3136)
self.image2hidden = chainerrl.links.Sequence(
L.Convolution2D(None, 32, 8, stride=4),
F.relu,
L.Convolution2D(None, 64, 4, stride=2),
F.relu,
L.Convolution2D(None, 64, 3, stride=1),
functools.partial(F.reshape, shape=(-1, 3136)),
)
self.hidden2out = chainerrl.links.Sequence(
L.Linear(None, 512),
F.relu,
L.Linear(None, n_actions),
DiscreteActionValue,
)
示例4: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, n_actions, n_input_channels=4,
activation=F.relu, bias=0.1):
self.n_actions = n_actions
self.n_input_channels = n_input_channels
self.activation = activation
super().__init__()
with self.init_scope():
self.conv_layers = chainer.ChainList(
L.Convolution2D(n_input_channels, 32, 8, stride=4,
initial_bias=bias),
L.Convolution2D(32, 64, 4, stride=2, initial_bias=bias),
L.Convolution2D(64, 64, 3, stride=1, initial_bias=bias))
self.a_stream = MLP(3136, n_actions, [512])
self.v_stream = MLP(3136, 1, [512])
示例5: init_like_torch
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def init_like_torch(link):
# Mimic torch's default parameter initialization
# TODO(muupan): Use chainer's initializers when it is merged
for l in link.links():
if isinstance(l, L.Linear):
out_channels, in_channels = l.W.shape
stdv = 1 / np.sqrt(in_channels)
l.W.array[:] = np.random.uniform(-stdv, stdv, size=l.W.shape)
if l.b is not None:
l.b.array[:] = np.random.uniform(-stdv, stdv, size=l.b.shape)
elif isinstance(l, L.Convolution2D):
out_channels, in_channels, kh, kw = l.W.shape
stdv = 1 / np.sqrt(in_channels * kh * kw)
l.W.array[:] = np.random.uniform(-stdv, stdv, size=l.W.shape)
if l.b is not None:
l.b.array[:] = np.random.uniform(-stdv, stdv, size=l.b.shape)
示例6: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, n_layers, n_vocab, embed_size, hidden_size, dropout=0.1):
hidden_size /= 3
super(CNNEncoder, self).__init__(
embed=L.EmbedID(n_vocab, embed_size, ignore_label=-1,
initialW=embed_init),
cnn_w3=L.Convolution2D(
embed_size, hidden_size, ksize=(3, 1), stride=1, pad=(2, 0),
nobias=True),
cnn_w4=L.Convolution2D(
embed_size, hidden_size, ksize=(4, 1), stride=1, pad=(3, 0),
nobias=True),
cnn_w5=L.Convolution2D(
embed_size, hidden_size, ksize=(5, 1), stride=1, pad=(4, 0),
nobias=True),
mlp=MLP(n_layers, hidden_size * 3, dropout)
)
self.output_size = hidden_size * 3
self.dropout = dropout
示例7: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self):
super(FCN_32s, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, pad=100),
conv1_2=L.Convolution2D(64, 64, 3),
conv2_1=L.Convolution2D(64, 128, 3),
conv2_2=L.Convolution2D(128, 128, 3),
conv3_1=L.Convolution2D(128, 256, 3),
conv3_2=L.Convolution2D(256, 256, 3),
conv4_1=L.Convolution2D(256, 512, 3),
conv4_2=L.Convolution2D(512, 512, 3),
conv4_3=L.Convolution2D(512, 512, 3),
conv5_1=L.Convolution2D(512, 512, 3),
conv5_2=L.Convolution2D(512, 512, 3),
conv5_3=L.Convolution2D(512, 512, 3),
fc6=L.Convolution2D(512, 4096, 7),
fc7=L.Convolution2D(4096, 4096, 1),
score_fr=L.Convolution2D(4096, 21, 1),
upsample=L.Deconvolution2D(21, 21, 64, 32),
)
self.train = True
示例8: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self):
super(VGG_multi, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
fc6=L.Linear(2048, 4096),
fc7=L.Linear(4096, 4096),
fc8=L.Linear(4096, 768),
)
self.train = True
示例9: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self):
super(VGG_single, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
fc6=L.Linear(2048, 4096),
fc7=L.Linear(4096, 4096),
fc8=L.Linear(4096, 256),
)
self.train = True
示例10: init_like_torch
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def init_like_torch(link):
# Mimic torch's default parameter initialization
# TODO(muupan): Use chainer's initializers when it is merged
for l in link.links():
if isinstance(l, L.Linear):
out_channels, in_channels = l.W.data.shape
stdv = 1 / np.sqrt(in_channels)
l.W.data[:] = np.random.uniform(-stdv, stdv, size=l.W.data.shape)
if l.b is not None:
l.b.data[:] = np.random.uniform(-stdv, stdv,
size=l.b.data.shape)
elif isinstance(l, L.Convolution2D):
out_channels, in_channels, kh, kw = l.W.data.shape
stdv = 1 / np.sqrt(in_channels * kh * kw)
l.W.data[:] = np.random.uniform(-stdv, stdv, size=l.W.data.shape)
if l.b is not None:
l.b.data[:] = np.random.uniform(-stdv, stdv,
size=l.b.data.shape)
示例11: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self):
super(Mix, self).__init__()
enc_ch = [3, 64, 256, 512, 1024, 2048]
ins_ch = [6, 128, 384, 640, 2176, 3072]
self.conv = [None] * 6
self.bn = [None] * 6
for i in range(1, 6):
c = L.Convolution2D(enc_ch[i] + ins_ch[i], enc_ch[i], 1, nobias=True)
b = L.BatchNormalization(enc_ch[i])
self.conv[i] = c
self.bn[i] = b
self.add_link('c{}'.format(i), c)
self.add_link('b{}'.format(i), b)
示例12: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, n_class=21):
self.train=True
super(FCN32s, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=100),
conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
fc6=L.Convolution2D(512, 4096, 7, stride=1, pad=0),
fc7=L.Convolution2D(4096, 4096, 1, stride=1, pad=0),
score_fr=L.Convolution2D(4096, n_class, 1, stride=1, pad=0,
nobias=True, initialW=np.zeros((n_class, 4096, 1, 1))),
upscore=L.Deconvolution2D(n_class, n_class, 64, stride=32, pad=0,
nobias=True, initialW=f.bilinear_interpolation_kernel(n_class, n_class, ksize=64)),
)
示例13: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, ch):
super(Link_Convolution2D, self).__init__(L.Convolution2D(None, None))
# code.InteractiveConsole({'ch': ch}).interact()
self.ksize = size2d(ch.ksize)
self.stride = size2d(ch.stride)
ps = size2d(ch.pad)
self.pads = ps + ps
if not (ch.b is None):
# nobias = True の場合
self.M = ch.b.shape[0]
self.b = helper.make_tensor_value_info(
'/b', TensorProto.FLOAT, [self.M])
else:
self.M = "TODO"
self.b = None
self.W = helper.make_tensor_value_info(
'/W', TensorProto.FLOAT,
[self.M, 'channel_size'] + list(self.ksize))
示例14: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
super(BottleNeckA, self).__init__()
initialW = initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(
in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
self.bn1 = L.BatchNormalization(ch)
self.conv2 = L.Convolution2D(
ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
groups=groups)
self.bn2 = L.BatchNormalization(ch)
self.conv3 = L.Convolution2D(
ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
self.bn3 = L.BatchNormalization(out_size)
self.conv4 = L.Convolution2D(
in_size, out_size, 1, stride, 0,
initialW=initialW, nobias=True)
self.bn4 = L.BatchNormalization(out_size)
示例15: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import Convolution2D [as 別名]
def __init__(self, in_channels, out1, proj3, out3, proj5, out5, proj_pool,
conv_init=None, bias_init=None):
super(Inception, self).__init__()
with self.init_scope():
self.conv1 = convolution_2d.Convolution2D(
in_channels, out1, 1, initialW=conv_init,
initial_bias=bias_init)
self.proj3 = convolution_2d.Convolution2D(
in_channels, proj3, 1, initialW=conv_init,
initial_bias=bias_init)
self.conv3 = convolution_2d.Convolution2D(
proj3, out3, 3, pad=1, initialW=conv_init,
initial_bias=bias_init)
self.proj5 = convolution_2d.Convolution2D(
in_channels, proj5, 1, initialW=conv_init,
initial_bias=bias_init)
self.conv5 = convolution_2d.Convolution2D(
proj5, out5, 5, pad=2, initialW=conv_init,
initial_bias=bias_init)
self.projp = convolution_2d.Convolution2D(
in_channels, proj_pool, 1, initialW=conv_init,
initial_bias=bias_init)