本文整理匯總了Python中chainer.links.BatchNormalization方法的典型用法代碼示例。如果您正苦於以下問題:Python links.BatchNormalization方法的具體用法?Python links.BatchNormalization怎麽用?Python links.BatchNormalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.links
的用法示例。
在下文中一共展示了links.BatchNormalization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.leaky_relu, mode='none', bn=False, dr=None):
super(ResBlock, self).__init__()
initializer = chainer.initializers.GlorotUniform()
initializer_sc = chainer.initializers.GlorotUniform()
self.activation = activation
self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None
self.learnable_sc = in_channels != out_channels
self.dr = dr
self.bn = bn
with self.init_scope():
self.c1 = L.Convolution2D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
self.c2 = L.Convolution2D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
if bn:
self.b1 = L.BatchNormalization(out_channels)
self.b2 = L.BatchNormalization(out_channels)
if self.learnable_sc:
self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
示例2: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.relu, mode='none', bn=True, dr=None):
super(ResBlock, self).__init__()
initializer = chainer.initializers.GlorotUniform()
initializer_sc = chainer.initializers.GlorotUniform()
self.activation = activation
self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None
self.learnable_sc = in_channels != out_channels
self.dr = dr
self.bn = bn
with self.init_scope():
self.c1 = L.Convolution1D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
self.c2 = L.Convolution1D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn)
if bn:
self.b1 = L.BatchNormalization(out_channels)
self.b2 = L.BatchNormalization(out_channels)
if self.learnable_sc:
self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
示例3: copy_param
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def copy_param(target_link, source_link):
"""Copy parameters of a link to another link."""
target_params = dict(target_link.namedparams())
for param_name, param in source_link.namedparams():
if target_params[param_name].array is None:
raise TypeError(
'target_link parameter {} is None. Maybe the model params are '
'not initialized.\nPlease try to forward dummy input '
'beforehand to determine parameter shape of the model.'.format(
param_name))
target_params[param_name].array[...] = param.array
# Copy Batch Normalization's statistics
target_links = dict(target_link.namedlinks())
for link_name, link in source_link.namedlinks():
if isinstance(link, L.BatchNormalization):
target_bn = target_links[link_name]
target_bn.avg_mean[...] = link.avg_mean
target_bn.avg_var[...] = link.avg_var
示例4: soft_copy_param
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def soft_copy_param(target_link, source_link, tau):
"""Soft-copy parameters of a link to another link."""
target_params = dict(target_link.namedparams())
for param_name, param in source_link.namedparams():
if target_params[param_name].array is None:
raise TypeError(
'target_link parameter {} is None. Maybe the model params are '
'not initialized.\nPlease try to forward dummy input '
'beforehand to determine parameter shape of the model.'.format(
param_name))
target_params[param_name].array[...] *= (1 - tau)
target_params[param_name].array[...] += tau * param.array
# Soft-copy Batch Normalization's statistics
target_links = dict(target_link.namedlinks())
for link_name, link in source_link.namedlinks():
if isinstance(link, L.BatchNormalization):
target_bn = target_links[link_name]
target_bn.avg_mean[...] *= (1 - tau)
target_bn.avg_mean[...] += tau * link.avg_mean
target_bn.avg_var[...] *= (1 - tau)
target_bn.avg_var[...] += tau * link.avg_var
示例5: soft_copy_param
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def soft_copy_param(target_link, source_link, tau, layers_in_use=None):
"""Soft-copy parameters of a link to another link."""
target_params = dict(target_link.namedparams())
for param_name, param in source_link.namedparams():
if layers_in_use is not None:
skip = True
for name in layers_in_use:
if param_name.startswith(name):
skip = False
break
if skip:
continue
target_params[param_name].data[:] *= (1 - tau)
target_params[param_name].data[:] += tau * param.data
# Soft-copy Batch Normalization's statistics
target_links = dict(target_link.namedlinks())
for link_name, link in source_link.namedlinks():
if isinstance(link, L.BatchNormalization):
target_bn = target_links[link_name]
target_bn.avg_mean[:] *= (1 - tau)
target_bn.avg_mean[:] += tau * link.avg_mean
target_bn.avg_var[:] *= (1 - tau)
target_bn.avg_var[:] += tau * link.avg_var
示例6: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, obs_size, n_actions, n_hidden_channels=[1024,256]):
super(QFunction,self).__init__()
net = []
inpdim = obs_size
for i,n_hid in enumerate(n_hidden_channels):
net += [ ('l{}'.format(i), L.Linear( inpdim, n_hid ) ) ]
net += [ ('norm{}'.format(i), L.BatchNormalization( n_hid ) ) ]
net += [ ('_act{}'.format(i), F.relu ) ]
inpdim = n_hid
net += [('output', L.Linear( inpdim, n_actions) )]
with self.init_scope():
for n in net:
if not n[0].startswith('_'):
setattr(self, n[0], n[1])
self.forward = net
示例7: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self):
super(Mix, self).__init__()
enc_ch = [3, 64, 256, 512, 1024, 2048]
ins_ch = [6, 128, 384, 640, 2176, 3072]
self.conv = [None] * 6
self.bn = [None] * 6
for i in range(1, 6):
c = L.Convolution2D(enc_ch[i] + ins_ch[i], enc_ch[i], 1, nobias=True)
b = L.BatchNormalization(enc_ch[i])
self.conv[i] = c
self.bn[i] = b
self.add_link('c{}'.format(i), c)
self.add_link('b{}'.format(i), b)
示例8: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, ch):
super(Link_BatchNormalization, self).__init__(
L.BatchNormalization(1))
self.n_out = ch.beta.shape[0]
self.scale = helper.make_tensor_value_info(
'/gamma', TensorProto.FLOAT, [self.n_out])
self.B = helper.make_tensor_value_info(
'/beta', TensorProto.FLOAT, [self.n_out])
self.mean = helper.make_tensor_value_info(
'/avg_mean', TensorProto.FLOAT, [self.n_out])
self.var = helper.make_tensor_value_info(
'/avg_var', TensorProto.FLOAT, [self.n_out])
self.eps = ch.eps
self.momentum = ch.decay
示例9: collect_inits
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def collect_inits(lk, pathname):
res = []
for na, pa in lk.namedparams():
if isinstance(pa.data, type(None)):
continue
if na.count('/') == 1:
res.append((pathname + na, pa))
if isinstance(lk, L.BatchNormalization):
res.append((pathname + '/avg_mean', lk.avg_mean))
# TODO(satos) このままだと、nodeのテストは通るがResNetのテストがつらい
# lk.avg_var = np.ones(lk.avg_var.shape).astype(np.float32) * 4.0
res.append((pathname + '/avg_var', lk.avg_var))
elif isinstance(lk, L.NStepLSTM) or isinstance(lk, L.NStepBiLSTM):
# 先にこちらで集めてしまう
for i, clk in enumerate(lk.children()):
for param in clk.params():
res.append((pathname + '/%d/%s' % (i, param.name), param))
return res
for clk in lk.children():
res += collect_inits(clk, pathname + '/' + clk.name)
return res
示例10: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
super(BottleNeckA, self).__init__()
initialW = initializers.HeNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(
in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
self.bn1 = L.BatchNormalization(ch)
self.conv2 = L.Convolution2D(
ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
groups=groups)
self.bn2 = L.BatchNormalization(ch)
self.conv3 = L.Convolution2D(
ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
self.bn3 = L.BatchNormalization(out_size)
self.conv4 = L.Convolution2D(
in_size, out_size, 1, stride, 0,
initialW=initialW, nobias=True)
self.bn4 = L.BatchNormalization(out_size)
示例11: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self, in_channels, out_channels, ksize=None,
stride=1, pad=0, dilate=1, groups=1, nobias=True,
initialW=None, initial_bias=None, activ=relu, bn_kwargs={}):
if ksize is None:
out_channels, ksize, in_channels = in_channels, out_channels, None
self.activ = activ
super(Conv2DBNActiv, self).__init__()
with self.init_scope():
self.conv = Convolution2D(
in_channels, out_channels, ksize, stride, pad,
nobias, initialW, initial_bias, dilate=dilate, groups=groups)
if 'comm' in bn_kwargs:
with flags.ignore_branch():
self.bn = MultiNodeBatchNormalization(
out_channels, **bn_kwargs)
else:
self.bn = BatchNormalization(out_channels, **bn_kwargs)
示例12: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self,
in_channels,
out_channels,
ksize,
stride,
pad,
num_blocks):
super(PolyConv, self).__init__()
with self.init_scope():
self.conv = L.Convolution2D(
in_channels=in_channels,
out_channels=out_channels,
ksize=ksize,
stride=stride,
pad=pad,
nobias=True)
for i in range(num_blocks):
setattr(self, "bn{}".format(i + 1), L.BatchNormalization(
size=out_channels,
eps=1e-5))
self.activ = F.relu
示例13: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self,
in_channels,
out_channels,
ksize,
stride,
pad,
groups):
super(CondenseSimpleConv, self).__init__()
with self.init_scope():
self.bn = L.BatchNormalization(size=in_channels)
self.activ = F.relu
self.conv = L.Convolution2D(
in_channels=in_channels,
out_channels=out_channels,
ksize=ksize,
stride=stride,
pad=pad,
nobias=True,
groups=groups)
示例14: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self,
in_channels,
out_channels,
ksize,
stride,
pad):
super(InceptConv, self).__init__()
with self.init_scope():
self.conv = L.Convolution2D(
in_channels=in_channels,
out_channels=out_channels,
ksize=ksize,
stride=stride,
pad=pad,
nobias=True)
self.bn = L.BatchNormalization(
size=out_channels,
decay=0.1,
eps=1e-3)
self.activ = F.relu
示例15: __init__
# 需要導入模塊: from chainer import links [as 別名]
# 或者: from chainer.links import BatchNormalization [as 別名]
def __init__(self,
in_channels,
out_channels,
reduction=16):
super(PreSEAttBlock, self).__init__()
mid_cannels = out_channels // reduction
with self.init_scope():
self.bn = L.BatchNormalization(
size=in_channels,
eps=1e-5)
self.conv1 = conv1x1(
in_channels=in_channels,
out_channels=mid_cannels,
use_bias=True)
self.conv2 = conv1x1(
in_channels=mid_cannels,
out_channels=out_channels,
use_bias=True)