本文整理匯總了Python中chainer.initializers方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.initializers方法的具體用法?Python chainer.initializers怎麽用?Python chainer.initializers使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.initializers方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def __init__(self, dtype=None):
W = None
bias = None
if dtype is not None:
self.dtype = dtype
W = chainer.initializers.Normal(dtype=self.dtype)
bias = chainer.initializers.Zero(dtype=self.dtype)
super(ExampleModel, self).__init__()
with self.init_scope():
self.a = chainer.links.Linear(2, 3, initialW=W, initial_bias=bias)
self.b = chainer.links.Linear(3, 4, initialW=W, initial_bias=bias)
self.c = chainer.links.Linear(None, 5, initialW=W,
initial_bias=bias)
示例2: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def __init__(self, pretrained_model, n_layers, downsample_fb=False):
super(ResNetLayers, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
conv_kwargs = {'initialW': constant.Zero()}
else:
# employ default initializers used in the original paper
conv_kwargs = {'initialW': normal.HeNormal(scale=1.0)}
kwargs = conv_kwargs.copy()
kwargs['downsample_fb'] = downsample_fb
if n_layers == 50:
block = [3, 4, 6, 3]
elif n_layers == 101:
block = [3, 4, 23, 3]
elif n_layers == 152:
block = [3, 8, 36, 3]
else:
raise ValueError('The n_layers argument should be either 50, 101,'
' or 152, but {} was given.'.format(n_layers))
with self.init_scope():
self.conv1 = Convolution2D(3, 64, 7, 2, 3, **conv_kwargs)
self.bn1 = BatchNormalization(64)
self.res2 = BuildingBlock(block[0], 64, 64, 256, 1, **kwargs)
self.res3 = BuildingBlock(block[1], 256, 128, 512, 2, **kwargs)
self.res4 = BuildingBlock(block[2], 512, 256, 1024, 2, **kwargs)
self.res5 = BuildingBlock(block[3], 1024, 512, 2048, 2, **kwargs)
self.fc6 = Linear(2048, 1000)
if pretrained_model and pretrained_model.endswith('.caffemodel'):
_retrieve(n_layers, 'ResNet-{}-model.npz'.format(n_layers),
pretrained_model, self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例3: zerograd
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def zerograd(self):
super(Parameter, self).zerograd()
if not self.is_initialized:
dtype = getattr(self.initializer, 'dtype', None)
self._grad_initializer = initializers.Zero(dtype)
示例4: initialize
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def initialize(self, shape):
"""Initializes the uninitialized variable.
Uninitialized variable is a variable created with the data array set to
None. This method creates and initializes the data array. The shape of
the variable can be left unknown until this method is called.
Args:
shape (tuple of int): Shape of the data array.
"""
device = self._initial_device
assert device is not None
xp = device.xp
data = initializers.generate_array(
self.initializer, shape, xp, device=device)
data = chainer.memory_layouts._transpose_array(data, None, self.layout)
if self._grad_initializer is None:
grad = None
else:
grad = initializers.generate_array(
self._grad_initializer, shape, xp, device=device)
grad = chainer.memory_layouts._transpose_array(
grad, None, self.layout)
self._set_array(data, layout_check=False)
self._set_grad(grad, layout_check=False)
# Convert the array for iDeep.
# TODO(niboshi): This could be done in generate_array().
if isinstance(self._initial_device, intel64.Intel64Device):
self.to_intel64()
示例5: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def __init__(self, pretrained_model='auto', n_layers=16):
super(VGGLayers, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
init = constant.Zero()
kwargs = {'initialW': init, 'initial_bias': init}
else:
# employ default initializers used in the original paper
kwargs = {
'initialW': normal.Normal(0.01),
'initial_bias': constant.Zero(),
}
if n_layers not in [16, 19]:
raise ValueError(
'The n_layers argument should be either 16 or 19, '
'but {} was given.'.format(n_layers)
)
with self.init_scope():
self.conv1_1 = Convolution2D(3, 64, 3, 1, 1, **kwargs)
self.conv1_2 = Convolution2D(64, 64, 3, 1, 1, **kwargs)
self.conv2_1 = Convolution2D(64, 128, 3, 1, 1, **kwargs)
self.conv2_2 = Convolution2D(128, 128, 3, 1, 1, **kwargs)
self.conv3_1 = Convolution2D(128, 256, 3, 1, 1, **kwargs)
self.conv3_2 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv3_3 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv4_1 = Convolution2D(256, 512, 3, 1, 1, **kwargs)
self.conv4_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv4_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_1 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_2 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_3 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.fc6 = Linear(512 * 7 * 7, 4096, **kwargs)
self.fc7 = Linear(4096, 4096, **kwargs)
self.fc8 = Linear(4096, 1000, **kwargs)
if n_layers == 19:
self.conv3_4 = Convolution2D(256, 256, 3, 1, 1, **kwargs)
self.conv4_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
self.conv5_4 = Convolution2D(512, 512, 3, 1, 1, **kwargs)
if pretrained_model == 'auto':
if n_layers == 16:
_retrieve(
'VGG_ILSVRC_16_layers.npz',
'https://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
'caffe/VGG_ILSVRC_16_layers.caffemodel',
self)
else:
_retrieve(
'VGG_ILSVRC_19_layers.npz',
'http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/'
'caffe/VGG_ILSVRC_19_layers.caffemodel',
self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例6: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def __init__(self, pretrained_model='auto'):
super(GoogLeNet, self).__init__()
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
kwargs = {'initialW': constant.Zero()}
else:
# employ default initializers used in BVLC. For more detail, see
# https://github.com/chainer/chainer/pull/2424#discussion_r109642209
kwargs = {'initialW': uniform.LeCunUniform(scale=1.0)}
with self.init_scope():
self.conv1 = Convolution2D(3, 64, 7, stride=2, pad=3, **kwargs)
self.conv2_reduce = Convolution2D(64, 64, 1, **kwargs)
self.conv2 = Convolution2D(64, 192, 3, stride=1, pad=1, **kwargs)
self.inc3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inc3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.inc4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inc4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inc4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inc4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inc4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.inc5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inc5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.loss3_fc = Linear(1024, 1000, **kwargs)
self.loss1_conv = Convolution2D(512, 128, 1, **kwargs)
self.loss1_fc1 = Linear(2048, 1024, **kwargs)
self.loss1_fc2 = Linear(1024, 1000, **kwargs)
self.loss2_conv = Convolution2D(528, 128, 1, **kwargs)
self.loss2_fc1 = Linear(2048, 1024, **kwargs)
self.loss2_fc2 = Linear(1024, 1000, **kwargs)
if pretrained_model == 'auto':
_retrieve(
'bvlc_googlenet.npz',
'http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel',
self)
elif pretrained_model:
npz.load_npz(pretrained_model, self)
示例7: __init__
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import initializers [as 別名]
def __init__(self,
n_class=None, pretrained_model=None, mean=None,
initialW=None, initial_bias=None):
param, path = utils.prepare_pretrained_model(
{'n_class': n_class, 'mean': mean},
pretrained_model, self._models,
{'n_class': 1000, 'mean': _imagenet_mean})
self.mean = param['mean']
if initialW is None:
# Employ default initializers used in the original paper.
initialW = normal.Normal(0.01)
if pretrained_model:
# As a sampling process is time-consuming,
# we employ a zero initializer for faster computation.
initialW = constant.Zero()
kwargs = {'initialW': initialW, 'initial_bias': initial_bias}
super(VGG16, self).__init__()
with self.init_scope():
self.conv1_1 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs)
self.conv1_2 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs)
self.pool1 = _max_pooling_2d
self.conv2_1 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs)
self.conv2_2 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs)
self.pool2 = _max_pooling_2d
self.conv3_1 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.conv3_2 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.conv3_3 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs)
self.pool3 = _max_pooling_2d
self.conv4_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv4_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv4_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.pool4 = _max_pooling_2d
self.conv5_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv5_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.conv5_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs)
self.pool5 = _max_pooling_2d
self.fc6 = Linear(None, 4096, **kwargs)
self.fc6_relu = relu
self.fc6_dropout = dropout
self.fc7 = Linear(None, 4096, **kwargs)
self.fc7_relu = relu
self.fc7_dropout = dropout
self.fc8 = Linear(None, param['n_class'], **kwargs)
self.prob = softmax
if path:
chainer.serializers.load_npz(path, self)