當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers._get_initializer方法代碼示例

本文整理匯總了Python中chainer.initializers._get_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers._get_initializer方法的具體用法?Python initializers._get_initializer怎麽用?Python initializers._get_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.initializers的用法示例。


在下文中一共展示了initializers._get_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, axis=1, W_shape=None, bias_term=False, bias_shape=None, initialW=None, initial_bias=None):
        super(Scale, self).__init__()
        self.axis = axis

        with self.init_scope():
            # Add W parameter and/or bias term.
            if W_shape is not None:
                if initialW is None:
                    initialW = 1
                W_initializer = initializers._get_initializer(initialW)
                self.W = variable.Parameter(W_initializer, W_shape)
                if bias_term:
                    self.bias = Bias(axis, W_shape, initial_bias)
            else:
                if bias_term:
                    if bias_shape is None:
                        raise ValueError(
                            'bias_shape should be given if W is not '
                            'learnt parameter and bias_term is True.')
                    self.bias = Bias(axis, W_shape, initial_bias) 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:22,代碼來源:scale.py

示例2: _initialize_params

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def _initialize_params(self):
        lateral_init = initializers._get_initializer(self.lateral_init)
        upward_init = initializers._get_initializer(self.upward_init)
        bias_init = initializers._get_initializer(self.bias_init)
        forget_bias_init = initializers._get_initializer(self.forget_bias_init)

        for i in six.moves.range(0, 4 * self.state_size, self.state_size):
            lateral_init(self.lateral.W.data[i:i + self.state_size, :])
            upward_init(self.upward.W.data[i:i + self.state_size, :])

        a, i, f, o = lstm._extract_gates(
            self.upward.b.data.reshape(1, 4 * self.state_size, 1))

        bias_init(a)
        bias_init(i)
        forget_bias_init(f)
        bias_init(o) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:19,代碼來源:StatelessLSTM.py

示例3: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self,
                 units,
                 in_units,
                 drop_rate=0.5):
        super(CondenseLinear, self).__init__()
        drop_in_units = int(in_units * drop_rate)
        with self.init_scope():
            self.dense = L.Linear(
                in_size=drop_in_units,
                out_size=units)

            self.index = initializers.generate_array(
                initializer=initializers._get_initializer(0),
                shape=(drop_in_units,),
                xp=self.xp,
                dtype=np.int32)
            self.register_persistent("index") 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:19,代碼來源:condensenet.py

示例4: _initialize_params

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def _initialize_params(self):
        lateral_init = initializers._get_initializer(self.lateral_init)
        upward_init = initializers._get_initializer(self.upward_init)
        bias_init = initializers._get_initializer(self.bias_init)
        forget_bias_init = initializers._get_initializer(self.forget_bias_init)

        for i in six.moves.range(0, 4 * self.state_size, self.state_size):
            lateral_init(self.lateral.W.array[i:i + self.state_size, :])
            upward_init(self.upward.W.array[i:i + self.state_size, :])

        a, i, f, o = lstm._extract_gates(
            self.upward.b.array.reshape(1, 4 * self.state_size, 1))

        bias_init(a)
        bias_init(i)
        forget_bias_init(f)
        bias_init(o) 
開發者ID:chainer,項目名稱:chainer,代碼行數:19,代碼來源:lstm.py

示例5: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, in_size, out_size, ratio=.5, nobias=False,
                 initialW=None, initial_bias=None):
        super(SimplifiedDropconnect, self).__init__()

        self.out_size = out_size
        self.ratio = ratio

        if initialW is None:
            initialW = initializers.HeNormal(1. / numpy.sqrt(2))

        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)
            if in_size is not None:
                self._initialize_params(in_size)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = initializers.Constant(0)
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, out_size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:25,代碼來源:simplified_dropconnect.py

示例6: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, in_channels, out_channels, in_size=None, ksize=None,
                 stride=1, nobias=False, initialW=None, initial_bias=None,
                 **kwargs):
        super(LocalConvolution2D, self).__init__()
        self.ksize = ksize
        self.stride = _pair(stride)
        self.nobias = nobias
        self.out_channels = out_channels
        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer)

            if in_channels is not None and in_size is not None:
                self._initialize_params(in_channels, _pair(in_size)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:local_convolution_2d.py

示例7: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, groups, size=None, eps=1e-5, initial_gamma=None,
                 initial_beta=None):
        super(GroupNormalization, self).__init__()
        if initial_gamma is None:
            initial_gamma = 1
        if initial_beta is None:
            initial_beta = 0

        highprec_dtype = chainer.get_dtype(
            None, map_mixed16=numpy.float32)

        with self.init_scope():
            self.groups = groups
            gamma_initializer = \
                initializers._get_initializer(initial_gamma)
            gamma_initializer.dtype = highprec_dtype
            beta_initializer = \
                initializers._get_initializer(initial_beta)
            beta_initializer.dtype = highprec_dtype
            self.gamma = variable.Parameter(gamma_initializer)
            self.beta = variable.Parameter(beta_initializer)
            self.eps = eps

        if size is not None:
            self._initialize_params(size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:27,代碼來源:group_normalization.py

示例8: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, in_size, out_size=None, nobias=True, initialW=None,
                 initial_bias=None):
        super(GraphConvolution, self).__init__()

        if out_size is None:
            in_size, out_size = None, in_size
        self.out_size = out_size

        with self.init_scope():
            if initialW is None:
                initialW = initializers.GlorotUniform()
            self.W = chainer.Parameter(initialW, (in_size, out_size))
            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = chainer.Parameter(bias_initializer, out_size) 
開發者ID:koreyou,項目名稱:text-gcn-chainer,代碼行數:21,代碼來源:nets.py

示例9: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, ndim, in_channels, out_channels, ksize, stride=1, pad=0,
                 nobias=False, initialW=None, initial_bias=None,
                 cover_all=False, use_gamma=False, Ip=1, factor=None):
        super(SNConvolutionND, self).__init__()
        ksize = conv_nd.as_tuple(ksize, ndim)
        self.stride = stride
        self.pad = pad
        self.cover_all = cover_all
        self.use_gamma = use_gamma
        self.Ip = Ip
        self.u = np.random.normal(size=(1, out_channels)).astype(dtype="f")
        self.register_persistent('u')
        self.factor = factor
        with self.init_scope():
            W_shape = (out_channels, in_channels) + ksize
            self.W = variable.Parameter(
                initializers._get_initializer(initialW), W_shape)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = 0
                initial_bias = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(initial_bias, out_channels)

            if self.use_gamma:
                W_mat = self.W.data.reshape(self.W.shape[0], -1)
                _, s, _ = np.linalg.svd(W_mat)
                self.gamma = variable.Parameter(s[0], (1,) * len(self.W.shape)) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:32,代碼來源:sn_convolution_nd.py

示例10: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, axis=1, shape=None, initial_bias=None):
        super(Bias, self).__init__()

        # Add b parameter if given.
        if shape is not None:
            with self.init_scope():
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, shape)

        self.axis = axis 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:14,代碼來源:bias.py

示例11: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(self, size, comm, decay=0.9, eps=2e-5, dtype=None,
                 use_gamma=True, use_beta=True,
                 initial_gamma=None, initial_beta=None,
                 communication_backend='auto'):
        chainer.utils.experimental(
            'chainermn.links.MultiNodeBatchNormalization')

        super(MultiNodeBatchNormalization, self).__init__()
        self._highprec_dtype = chainer.get_dtype(
            dtype, map_mixed16=numpy.float32)
        self.comm = comm
        self.avg_mean = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_mean')
        self.avg_var = numpy.zeros(size, dtype=self._highprec_dtype)
        self.register_persistent('avg_var')
        self.N = 0
        self.register_persistent('N')
        self.decay = decay
        self.eps = eps

        self._communication_backend = \
            chainermn_batch_normalization.get_communication_backend(
                comm, communication_backend)

        with self.init_scope():
            if use_gamma:
                if initial_gamma is None:
                    initial_gamma = 1
                initial_gamma = initializers._get_initializer(initial_gamma)
                initial_gamma.dtype = self._highprec_dtype
                self.gamma = variable.Parameter(initial_gamma, size)
            if use_beta:
                if initial_beta is None:
                    initial_beta = 0
                initial_beta = initializers._get_initializer(initial_beta)
                initial_beta.dtype = self._highprec_dtype
                self.beta = variable.Parameter(initial_beta, size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:39,代碼來源:batch_normalization.py

示例12: test_scalar

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def test_scalar(self):
        init = initializers._get_initializer(10)
        self.assertIsInstance(init, initializers.Constant)

        x = numpy.empty((2, 3), dtype=numpy.int32)
        init(x)

        expected = numpy.full((2, 3), 10, dtype=numpy.int32)
        numpy.testing.assert_array_equal(x, expected) 
開發者ID:chainer,項目名稱:chainer,代碼行數:11,代碼來源:test_init.py

示例13: test_numpy_array

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def test_numpy_array(self):
        c = numpy.array([1, 2, 3])
        init = initializers._get_initializer(c)

        self.assertIsInstance(init, initializers.Constant)

        x = numpy.empty((3,), dtype=numpy.int32)
        init(x)

        expected = numpy.array([1, 2, 3], dtype=numpy.int32)
        numpy.testing.assert_array_equal(x, expected) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_init.py

示例14: test_callable

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def test_callable(self):

        def initializer(arr):
            arr[...] = 100

        init = initializers._get_initializer(initializer)
        self.assertTrue(callable(init))

        x = numpy.empty((2, 3), dtype=numpy.int32)
        init(x)

        expected = numpy.full((2, 3), 100, dtype=numpy.int32)
        numpy.testing.assert_array_equal(x, expected) 
開發者ID:chainer,項目名稱:chainer,代碼行數:15,代碼來源:test_init.py

示例15: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import _get_initializer [as 別名]
def __init__(
            self,
            in_size: tp.Optional[int],
            out_size: tp.Optional[int] = None,
            nobias: bool = False,
            initialW: tp.Optional[types.InitializerSpec] = None,
            initial_bias: tp.Optional[types.InitializerSpec] = None
    ) -> None:
        super(Linear, self).__init__()

        if out_size is None:
            in_size, out_size = None, in_size
        self.in_size = in_size
        self.out_size = out_size

        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)  # type: variable.Variable  # NOQA
            if in_size is not None:
                self._initialize_params(in_size)

            if nobias:
                self.b = None  # type: tp.Optional[variable.Variable]
            else:
                if initial_bias is None:
                    initial_bias = 0
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, out_size) 
開發者ID:chainer,項目名稱:chainer,代碼行數:30,代碼來源:linear.py


注:本文中的chainer.initializers._get_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。