當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.Normal方法代碼示例

本文整理匯總了Python中chainer.initializers.Normal方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.Normal方法的具體用法?Python initializers.Normal怎麽用?Python initializers.Normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.initializers的用法示例。


在下文中一共展示了initializers.Normal方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_class, scales):
        super(BboxHead, self).__init__()

        fc_init = {
            'initialW': Caffe2FCUniform(),
            'initial_bias': Caffe2FCUniform(),
        }
        with self.init_scope():
            self.fc1 = L.Linear(1024, **fc_init)
            self.fc2 = L.Linear(1024, **fc_init)
            self.loc = L.Linear(
                n_class * 4, initialW=initializers.Normal(0.001))
            self.conf = L.Linear(n_class, initialW=initializers.Normal(0.01))

        self._n_class = n_class
        self._scales = scales 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:18,代碼來源:bbox_head.py

示例2: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, vocab_size, hidden_size, dropout_ratio, ignore_label):
        super(LSTMLanguageModel, self).__init__()
        with self.init_scope():
            self.embed_word = L.EmbedID(
                vocab_size,
                hidden_size,
                initialW=initializers.Normal(1.0),
                ignore_label=ignore_label
            )
            self.embed_img = L.Linear(
                hidden_size,
                initialW=initializers.Normal(0.01)
            )
            self.lstm = L.LSTM(hidden_size, hidden_size)
            self.out_word = L.Linear(
                hidden_size,
                vocab_size,
                initialW=initializers.Normal(0.01)
            )

        self.dropout_ratio = dropout_ratio 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:model.py

示例3: test_copy_with_init_mode

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def test_copy_with_init_mode(self):
        self.link.u.initializer = initializers.Normal(
            dtype=self.link.u.initializer.dtype)
        self.link.u.initialize((2, 3))
        link = self.link.copy(mode='init')
        self.assertFalse(numpy.array_equal(self.link.u.array, link.u.array))
        self.assertIsInstance(link._params, set)
        self.assertIsInstance(link._persistent, set)
        self.assertTrue(hasattr(link, 'x'))
        self.assertTrue(hasattr(link, 'y'))
        self.assertTrue(hasattr(link, 'u'))
        self.assertTrue(hasattr(link, 'p'))
        self.assertIsNot(link.x, self.link.x)
        self.assertIsNot(link.x.array, self.link.x.array)
        self.assertIsNot(link.y, self.link.y)
        self.assertIsNot(link.y.array, self.link.y.array)
        self.assertIsNot(link.p, self.link.p)
        self.assertIsNot(link.name, None) 
開發者ID:chainer,項目名稱:chainer,代碼行數:20,代碼來源:test_link.py

示例4: create_initializer

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def create_initializer(init_type, scale=None, fillvalue=None):
    if init_type == 'identity':
        return initializers.Identity() if scale is None else initializers.Identity(scale=scale)
    if init_type == 'constant':
        return initializers.Constant(fillvalue)
    if init_type == 'zero':
        return initializers.Zero()
    if init_type == 'one':
        return initializers.One()
    if init_type == 'normal':
        return initializers.Normal() if scale is None else initializers.Normal(scale)
    if init_type == 'glorotNormal':
        return initializers.GlorotNormal() if scale is None else initializers.GlorotNormal(scale)
    if init_type == 'heNormal':
        return initializers.HeNormal() if scale is None else initializers.HeNormal(scale)
    if init_type == 'orthogonal':
        return initializers.Orthogonal(
            scale) if scale is None else initializers.Orthogonal(scale)
    if init_type == 'uniform':
        return initializers.Uniform(
            scale) if scale is None else initializers.Uniform(scale)
    if init_type == 'leCunUniform':
        return initializers.LeCunUniform(
            scale) if scale is None else initializers.LeCunUniform(scale)
    if init_type == 'glorotUniform':
        return initializers.GlorotUniform(
            scale) if scale is None else initializers.GlorotUniform(scale)
    if init_type == 'heUniform':
        return initializers.HeUniform(
            scale) if scale is None else initializers.HeUniform(scale)
    raise ValueError("Unknown initializer type: {0}".format(init_type)) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:33,代碼來源:rnn_cells.py

示例5: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, scales):
        super(RPN, self).__init__()

        init = {'initialW': initializers.Normal(0.01)}
        with self.init_scope():
            self.conv = L.Convolution2D(256, 3, pad=1, **init)
            self.loc = L.Convolution2D(len(self._anchor_ratios) * 4, 1, **init)
            self.conf = L.Convolution2D(len(self._anchor_ratios), 1, **init)

        self._scales = scales 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:12,代碼來源:rpn.py

示例6: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_units, n_vocab, encoder, max_memory, hops):
        super(MemNN, self).__init__()

        with self.init_scope():
            self.embeds = chainer.ChainList()
            self.temporals = chainer.ChainList()

        normal = initializers.Normal()
        # Shares both embeded matrixes in adjacent layres
        for _ in six.moves.range(hops + 1):
            self.embeds.append(L.EmbedID(n_vocab, n_units, initialW=normal))
            self.temporals.append(
                L.EmbedID(max_memory, n_units, initialW=normal))

        self.memories = [
            Memory(self.embeds[i], self.embeds[i + 1],
                   self.temporals[i], self.temporals[i + 1], encoder)
            for i in six.moves.range(hops)
        ]
        # The question embedding is same as the input embedding of the
        # first layer
        self.B = self.embeds[0]
        # The answer prediction matrix W is same as the final output layer
        self.W = lambda u: F.linear(u, self.embeds[-1].W)

        self.encoder = encoder

        self.n_units = n_units
        self.max_memory = max_memory
        self.hops = hops 
開發者ID:chainer,項目名稱:chainer,代碼行數:32,代碼來源:memnn.py

示例7: setUp

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def setUp(self):

        class Layer(chainer.Link):
            def __init__(self):
                super(Layer, self).__init__()
                with self.init_scope():
                    self.x = chainer.Parameter(
                        chainer.initializers.Normal(), shape=(2, 3))

            def forward(self):
                pass

        self.link = Layer() 
開發者ID:chainer,項目名稱:chainer,代碼行數:15,代碼來源:test_link.py

示例8: test_copy_with_share_mode

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def test_copy_with_share_mode(self):
        c2 = self.c2.copy(mode='share')
        self.l1.x.initializer = initializers.Normal(
            dtype=self.l1.x.initializer.dtype)
        self.l1.x.initialize(self.l1.x.shape)
        self.l2.x.initializer = initializers.Normal(
            dtype=self.l2.x.initializer.dtype)
        self.l2.x.initialize(self.l2.x.shape)

        self.assertIs(c2.name, None)
        self.assertIsInstance(c2._children, list)
        self.assertIsNot(c2[0], self.c1)
        self.assertEqual(c2[0].name, '0')
        self.assertIsInstance(c2[0]._children, list)
        self.assertIsNot(c2[0][0], self.l1)
        self.assertEqual(c2[0][0].name, '0')
        self.assertIsNot(c2[0][0].x, self.l1.x)
        self.assertIs(c2[0][0].x.data, self.l1.x.data)
        self.assertIs(c2[0][0].x.grad, None)

        self.assertIsNot(c2[0][1], self.l2)
        self.assertEqual(c2[0][1].name, '1')
        self.assertIsNot(c2[0][1].x, self.l2.x)
        self.assertIs(c2[0][1].x.data, self.l2.x.data)
        self.assertIs(c2[0][1].x.grad, None)

        self.assertIsNot(c2[1], self.l3)
        self.assertEqual(c2[1].name, '1')
        self.assertIsNot(c2[1].x, self.l3.x)
        self.assertIs(c2[1].x.data, self.l3.x.data)
        self.assertIs(c2[1].x.grad, None) 
開發者ID:chainer,項目名稱:chainer,代碼行數:33,代碼來源:test_link.py

示例9: test_copy_with_copy_mode

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def test_copy_with_copy_mode(self):
        self.l1.x.initializer = initializers.Normal(
            dtype=self.l1.x.initializer.dtype)
        self.l1.x.initialize(self.l1.x.shape)
        self.l2.x.initializer = initializers.Normal(
            dtype=self.l2.x.initializer.dtype)
        self.l2.x.initialize(self.l2.x.shape)

        c2 = self.c2.copy(mode='copy')
        self.assertIs(c2.name, None)
        self.assertIsInstance(c2._children, list)
        self.assertEqual(c2[0].name, '0')
        self.assertIsInstance(c2[0]._children, list)
        self.assertIsNot(c2[0][0], self.l1)
        self.assertEqual(c2[0][0].name, '0')
        self.assertIsNot(c2[0][0].x, self.l1.x)
        self.assertIsNot(c2[0][0].x.data, self.l1.x.data)
        self.assertTrue(numpy.array_equal(c2[0][0].x.data, self.l1.x.data))
        self.assertIs(c2[0][0].x.grad, None)

        self.assertIsNot(c2[0][1], self.l2)
        self.assertEqual(c2[0][1].name, '1')
        self.assertIsNot(c2[0][1].x, self.l2.x)
        self.assertIsNot(c2[0][1].x.data, self.l2.x.data)
        self.assertTrue(numpy.array_equal(c2[0][1].x.data, self.l2.x.data))
        self.assertIs(c2[0][1].x.grad, None)

        self.assertIsNot(c2[1], self.l3)
        self.assertEqual(c2[1].name, '1')
        self.assertIsNot(c2[1].x, self.l3.x)
        self.assertIsNot(c2[1].x.data, self.l3.x.data)
        # l3 is constructed with shape argument but not initialized
        self.assertTrue(numpy.isnan(c2[1].x.grad).all()) 
開發者ID:chainer,項目名稱:chainer,代碼行數:35,代碼來源:test_link.py

示例10: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            with self.init_scope():
                self.w = chainer.Parameter(
                    initializers.Normal(scale=0.02), (nf, nx))  # transposed
                self.b = chainer.Parameter(0., nf)
        else:  # was used to train LM
            raise NotImplementedError 
開發者ID:chainer,項目名稱:models,代碼行數:13,代碼來源:model_py.py

示例11: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}):
        blocks = self._blocks[n_layer]

        param, path = utils.prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {
            'initialW': initialW, 'stride_first': True, 'add_seblock': True}

        super(SEResNet, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 64, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 128, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 512, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax

        if path:
            chainer.serializers.load_npz(path, self) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:41,代碼來源:se_resnet.py

示例12: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}):
        blocks = self._blocks[n_layer]

        param, path = utils.prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {
            'groups': 32, 'initialW': initialW, 'stride_first': False,
            'add_seblock': True}

        super(SEResNeXt, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 128, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 256, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 512, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 1024, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax

        if path:
            chainer.serializers.load_npz(path, self) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:42,代碼來源:se_resnext.py

示例13: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}, arch='fb'):
        if arch == 'fb':
            stride_first = False
            conv1_no_bias = True
        elif arch == 'he':
            stride_first = True
            # Kaiming He uses bias only for ResNet50
            conv1_no_bias = n_layer != 50
        else:
            raise ValueError('arch is expected to be one of [\'he\', \'fb\']')
        blocks = self._blocks[n_layer]

        param, path = prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[arch][n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {'initialW': initialW, 'stride_first': stride_first}

        super(ResNet, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=conv1_no_bias,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 64, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 128, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 512, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax
            self._pick = ('prob',)
            self._return_tuple = False

        if path:
            chainer.serializers.load_npz(path, self) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:51,代碼來源:resnet.py

示例14: __init__

# 需要導入模塊: from chainer import initializers [as 別名]
# 或者: from chainer.initializers import Normal [as 別名]
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}, arch='fb'):
        if arch == 'fb':
            stride_first = False
            conv1_no_bias = True
        elif arch == 'he':
            stride_first = True
            # Kaiming He uses bias only for ResNet50
            conv1_no_bias = n_layer != 50
        else:
            raise ValueError('arch is expected to be one of [\'he\', \'fb\']')
        blocks = self._blocks[n_layer]

        param, path = utils.prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[arch][n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {'initialW': initialW, 'stride_first': stride_first}

        super(ResNet, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=conv1_no_bias,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 64, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 128, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 512, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax

        if path:
            chainer.serializers.load_npz(path, self) 
開發者ID:chainer,項目名稱:chainercv,代碼行數:49,代碼來源:resnet.py


注:本文中的chainer.initializers.Normal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。