本文整理匯總了Python中chainer.grad方法的典型用法代碼示例。如果您正苦於以下問題:Python chainer.grad方法的具體用法?Python chainer.grad怎麽用?Python chainer.grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer
的用法示例。
在下文中一共展示了chainer.grad方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_type_check
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def test_type_check(self):
x = chainer.Variable(numpy.random.uniform(-1, 1, (2, 3)).astype('f'))
y = x * x
gx = chainer.Variable(numpy.random.uniform(-1, 1, (2, 3)).astype('f'))
gy = chainer.Variable(numpy.random.uniform(-1, 1, (2, 3)).astype('f'))
chainer.grad([y], [x], [gx], [gy])
chainer.grad((y,), (x,), (gx,), (gy,))
with self.assertRaises(TypeError):
chainer.grad(y, [x], [gx], [gy])
with self.assertRaises(TypeError):
chainer.grad([y], x, [gx], [gy])
with self.assertRaises(TypeError):
chainer.grad([y], [x], gx, [gy])
with self.assertRaises(TypeError):
chainer.grad([y], [x], [gx], gy)
示例2: check_double_grad
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def check_double_grad(self):
self.forward()
ys = [getattr(self, name) for name in self.y_names]
gxs = chainer.grad(ys, self.xs, self.gys, self.gxs,
enable_double_backprop=True,
loss_scale=self.loss_scale)
y = sum(gxs)
ggxs = chainer.grad([y], self.xs)
expected = self.expected_double_grad()
self.assertEqual(len(ggxs), len(expected))
try:
for a, e in zip(ggxs, expected):
testing.assert_allclose(self._get_value(a), self._get_value(e))
except Exception:
self._print_inputs()
self._print_variables('gxs ', gxs)
self._print_variables('ggxs (actual) ', ggxs)
self._print_variables('ggxs (expected)', expected)
raise
示例3: test_retain_output
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def test_retain_output(self):
xp = numpy
x_array = xp.random.randn(3)
y1_grad = xp.random.randn(3)
x_grad_grad = xp.random.randn(3)
x = chainer.Variable(x_array, name='x')
y0, y1 = exp_and_expm1(x)
del y0
# (x: Variable) requires grad
# (y1_grad: ndarray) does not require grad
gx, = chainer.grad([y1], [x], [y1_grad], enable_double_backprop=True)
# assert gx == exp(x) * y1_grad
xp.testing.assert_allclose(
gx.array,
xp.exp(x.array) * y1_grad)
gx_, = chainer.grad([gx], [x], [x_grad_grad])
xp.testing.assert_allclose(
gx_.array,
gx.array * x_grad_grad)
示例4: check
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def check(self, option, grads_before, grads_after):
vs = []
v = self._var(0.5)
for _ in range(4):
vs.append(v)
v += v
vs.append(v)
v *= 1.
_, x1, _, x2, _, y1, _, y2 = vs
gx1 = self._var(1000.)
gx2 = self._var(100.)
gy1 = self._var(10.)
gy2 = self._var(1.)
for v, g in zip(vs, grads_before):
if g is not None:
v.grad_var = self._var(g)
grads = chainer.grad(
[y1, y2], [x1, x2], [gy1, gy2], [gx1, gx2], **option)
numpy.testing.assert_allclose(grads[0].array, 1248.)
numpy.testing.assert_allclose(grads[1].array, 124.)
for v, ans in zip(vs, grads_after):
if ans is None:
self.assertIsNone(v.grad)
else:
numpy.testing.assert_allclose(v.grad, ans)
示例5: check_backward_accumulate
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def check_backward_accumulate(self, xp):
inputs = self._get_inputs()
a, b, c = [inputs[i] for i in self.var_mapping]
y = muladd(a, b, c)
y.grad = self.gy
y.backward()
inputs2 = self._get_inputs()
a2, b2, c2 = [inputs2[i] for i in self.var_mapping]
y2 = chainer.as_variable(a2 * b2 + c2)
y2.grad = self.gy
y2.backward()
tol = {'atol': 1e-4, 'rtol': 1e-4}
for x, x2, (isvar, _) in zip(
inputs, inputs2, self.inputs_isvar_hasgrad):
if isvar:
xp.testing.assert_allclose(x.grad, x2.grad, **tol)
示例6: test_grad
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def test_grad(self, backend_config):
x = backend_config.get_array(
np.random.uniform(-1, 1, self.shape).astype(np.float32))
g = backend_config.get_array(
np.random.uniform(0.1, 10, self.shape).astype(np.float32))
v = chainer.Variable(x, requires_grad=self.requires_grad)
expected_error = (
backend_config.xp is chainerx
and not self.requires_grad)
if expected_error:
with pytest.raises(Exception):
v.grad = g
else:
v.grad = g
assert v.grad_var.requires_grad is True
assert v.grad is not None
assert v.requires_grad == self.requires_grad
backend_config.xp.testing.assert_array_equal(v.grad, g)
示例7: check_grad_var
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def check_grad_var(self, backend_config, grad_var_requires_grad):
x = backend_config.get_array(
np.random.uniform(-1, 1, self.shape).astype(np.float32))
g = backend_config.get_array(
np.random.uniform(0.1, 10, self.shape).astype(np.float32))
v = chainer.Variable(x, requires_grad=self.requires_grad)
gv = chainer.Variable(g, requires_grad=grad_var_requires_grad)
expected_error = (
backend_config.xp is chainerx
and not self.requires_grad)
if expected_error:
with pytest.raises(Exception):
v.grad_var = gv
else:
v.grad_var = gv
assert v.requires_grad == self.requires_grad
backend_config.xp.testing.assert_array_equal(v.grad, g)
# Same instance should be returned each time.
assert v.grad_var is gv
示例8: test_from_chx
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def test_from_chx(self, backend_config):
x = backend_config.get_array(self.x)
x_var = chainer.Variable(x, requires_grad=False)
x_var.from_chx()
expected_xp, expected_device = self.infer_expected_xp_and_device(x)
assert x_var.xp is expected_xp
assert x_var._has_chainerx_array is (expected_xp is chainerx)
assert x_var.node is not None
assert isinstance(x_var.array, expected_xp.ndarray)
assert expected_device is None or x_var.array.device == expected_device
assert x.shape == x_var.shape
assert x.dtype == x_var.dtype
assert x_var.grad is None
assert x_var.grad_var is None
np.testing.assert_array_equal(
backend.CpuDevice().send(x_var.array), backend.CpuDevice().send(x))
示例9: _compute_backward
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def _compute_backward(self, x, gamma, beta, y, gy):
assert isinstance(x, chainer.Variable)
assert isinstance(gamma, chainer.Variable)
assert isinstance(beta, chainer.Variable)
assert isinstance(y, chainer.Variable)
assert isinstance(gy, chainer.Variable)
if x.xp is chainerx:
# TODO(niboshi): ChainerX does not support grad yet
y.grad = gy.array.copy()
y.backward()
gx = x.grad_var
ggamma = gamma.grad_var
gbeta = beta.grad_var
else:
gx, ggamma, gbeta = chainer.grad([y], [x, gamma, beta], [gy])
return gx.array, ggamma.array, gbeta.array
示例10: _test_replace_func
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def _test_replace_func(self, fn, xs, set_grad=False):
def make_list(v):
if isinstance(v, (list, tuple)):
return list(v)
else:
return [v]
xvs = [x for x in xs if isinstance(x, chainer.Variable)]
rfn = as_funcnode('fn')(fn)
eys = make_list(fn(*xs))
egxs = chainer.grad(eys, xvs, set_grad=set_grad)
ays = make_list(rfn(*xs))
agxs = chainer.grad(ays, xvs, set_grad=set_grad)
assert len(eys) == len(ays)
for ay, ey in zip(ays, eys):
np.testing.assert_allclose(ay.array, ey.array)
assert len(egxs) == len(agxs)
for agx, egx in zip(agxs, egxs):
if egx is None:
assert egx is None
else:
np.testing.assert_allclose(agx.array, egx.array)
示例11: test_backward_no_side_effect
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def test_backward_no_side_effect(self):
a = chainer.Variable(np.array(2.3))
b = chainer.Variable(np.array(4.2))
x0 = a * b
x1 = chainer.Variable(np.array(3.7))
self._test_replace_func(lambda a, b: a * b, [x0, x1])
# No side-effect to `grad`.
assert x0.grad is None
assert x1.grad is None
assert a.grad is None
assert b.grad is None
# Gradient computation must stop at `x0` and `x1`.
self._test_replace_func(lambda a, b: a * b, [x0, x1], set_grad=True)
assert x0.grad is not None
assert x1.grad is not None
assert a.grad is None
assert b.grad is None
示例12: run_param_post_hooks
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def run_param_post_hooks(self):
"""Update parameter attributes after schedule is executed.
If any dynamically-allocated arrays in the schedule correspond to
a parameter attribute, it must be updated after the schedule is
run.
"""
if self.verbosity_level >= 2:
print('run_param_post_hooks()...')
for hook in self.param_post_hooks:
(unique_array_index, param_attribute_location) = hook
(params_list_index, attribute_location) = param_attribute_location
if attribute_location == 'data':
self.params_list[params_list_index].data = \
self.unique_arrays[unique_array_index]
elif attribute_location == 'grad':
self.params_list[params_list_index].grad = \
self.unique_arrays[unique_array_index]
示例13: compute_hessian_vector_product
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def compute_hessian_vector_product(y, params, vec):
grads = chainer.grad(
[y], params, enable_double_backprop=True)
flat_grads = trpo._flatten_and_concat_variables(grads)
return trpo._hessian_vector_product(flat_grads, params, vec)
示例14: compute_hessian
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def compute_hessian(y, params):
grads = chainer.grad(
[y], params, enable_double_backprop=True)
flat_grads = trpo._flatten_and_concat_variables(grads)
hessian_rows = []
for i in range(len(flat_grads)):
ggrads = chainer.grad([flat_grads[i]], params)
assert all(ggrad is not None for ggrad in ggrads)
ggrads_data = [ggrad.array for ggrad in ggrads]
flat_ggrads_data = trpo._flatten_and_concat_ndarrays(ggrads_data)
hessian_rows.append(flat_ggrads_data)
return np.asarray(hessian_rows)
示例15: compute_loss_with_kl_constraint
# 需要導入模塊: import chainer [as 別名]
# 或者: from chainer import grad [as 別名]
def compute_loss_with_kl_constraint(distrib, another_distrib, original_loss,
delta):
"""Compute loss considering a KL constraint.
Args:
distrib (Distribution): Distribution to optimize
another_distrib (Distribution): Distribution used to compute KL
original_loss (chainer.Variable): Loss to minimize
delta (float): Minimum KL difference
Returns:
loss (chainer.Variable)
"""
for param in distrib.params:
assert param.shape[0] == 1
assert param.requires_grad
# Compute g: a direction to minimize the original loss
g = [grad.array[0] for grad in
chainer.grad([F.squeeze(original_loss)], distrib.params)]
# Compute k: a direction to increase KL div.
kl = F.squeeze(another_distrib.kl(distrib))
k = [grad.array[0] for grad in
chainer.grad([-kl], distrib.params)]
# Compute z: combination of g and k to keep small KL div.
kg_dot = sum(np.dot(kp.ravel(), gp.ravel())
for kp, gp in zip(k, g))
kk_dot = sum(np.dot(kp.ravel(), kp.ravel()) for kp in k)
if kk_dot > 0:
k_factor = max(0, ((kg_dot - delta) / kk_dot))
else:
k_factor = 0
z = [gp - k_factor * kp for kp, gp in zip(k, g)]
loss = 0
for p, zp in zip(distrib.params, z):
loss += F.sum(p * zp)
return F.reshape(loss, original_loss.shape), float(kl.array)