當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.where方法代碼示例

本文整理匯總了Python中chainer.functions.where方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.where方法的具體用法?Python functions.where怎麽用?Python functions.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.where方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def __call__(self, x, mask):
        self.m.W.data = self.xp.array(self.maskW) #mask windows are set by 1
        h = self.c(x*mask) #(B,C,H,W)
        B,C,H,W = h.shape
        b = F.transpose(F.broadcast_to(self.c.b,(B,H,W,C)),(0,3,1,2))
        h = h - b
        mask_sums = self.m(mask)
        mask_new = (self.xp.sign(mask_sums.data-0.5)+1.0)*0.5
        mask_new_b = mask_new.astype("bool")
        
        mask_sums = F.where(mask_new_b,mask_sums,0.01*Variable(self.xp.ones(mask_sums.shape).astype("f")))
        h = h/mask_sums + b
         
        mask_new = Variable(mask_new)
        h = F.where(mask_new_b, h, Variable(self.xp.zeros(h.shape).astype("f"))) 

        if self.bn:
            h = self.batchnorm(h)
        if self.noise:
            h = add_noise(h)
        if self.dropout:
            h = F.dropout(h)
        if not self.activation is None:
            h = self.activation(h)
        return h, mask_new 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:27,代碼來源:net.py

示例2: attend

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def attend(self, query, key, value, mask, minfs=None):
        """
        Input shapes:
            q=(b, units, dec_l), k=(b, units, enc_l),
            v=(b, units, dec_l, enc_l), m=(b, dec_l, enc_l)
        """

        # Calculate Attention Scores with Mask for Zero-padded Areas
        pre_a = F.batch_matmul(query, key, transa=True)  # (b, dec_l, enc_l)
        minfs = self.xp.full(pre_a.shape, -np.inf, pre_a.dtype) \
            if minfs is None else minfs
        pre_a = F.where(mask, pre_a, minfs)
        a = F.softmax(pre_a, axis=2)
        # if values in axis=2 are all -inf, they become nan. thus do re-mask.
        a = F.where(self.xp.isnan(a.data),
                    self.xp.zeros(a.shape, dtype=a.dtype), a)
        reshaped_a = a[:, None]  # (b, 1, dec_xl, enc_l)

        # Calculate Weighted Sum
        pre_c = F.broadcast_to(reshaped_a, value.shape) * value
        c = F.sum(pre_c, axis=3, keepdims=True)  # (b, units, dec_xl, 1)
        return c 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:24,代碼來源:net.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def __call__(self, x, rois, roi_indices):
        # global context module
        h = self.global_context_module(x)
        # psroi max align
        pool = ps_roi_max_align_2d(
            h, rois, roi_indices,
            (10, self.roi_size, self.roi_size),
            self.spatial_scale, self.roi_size,
            sampling_ratio=2)
        pool = F.where(
            self.xp.isinf(pool.array),
            self.xp.zeros(pool.shape, dtype=pool.dtype), pool)

        # fc
        fc1 = F.relu(self.fc1(pool))
        roi_cls_locs = self.cls_loc(fc1)
        roi_scores = self.score(fc1)
        return roi_cls_locs, roi_scores 
開發者ID:chainer,項目名稱:chainercv,代碼行數:20,代碼來源:light_head_rcnn_resnet101.py

示例4: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def calc_loss(self, grids, image_size, **kwargs):
        """
            Calculate a loss based on the expected grid size. Penalize all predicted grids, where the area of the grid
            is smaller than the area of the crop area
        """
        top_left_x, top_right_x, _, _, top_left_y, _, bottom_left_y, _ = self.get_corners(grids, image_size)

        grid_widths = top_right_x - top_left_x
        grid_heights = bottom_left_y - top_left_y
        expected_width = self.xp.full_like(grid_widths.array, grids.shape[-1], dtype=grid_widths.dtype)
        expected_height = self.xp.full_like(grid_heights.array, grids.shape[2], dtype=grid_heights.dtype)

        width_loss = F.maximum(self.xp.zeros_like(grid_widths.array), expected_width - grid_widths)
        height_loss = F.maximum(self.xp.zeros_like(grid_heights.array), expected_height - grid_heights)

        return sum(width_loss) + sum(height_loss) 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:18,代碼來源:utils.py

示例5: shifted_softplus

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def shifted_softplus(x, beta=1, shift=0.5, threshold=20):
    """shifted softplus function, which holds f(0)=0.

     Args:
        x (Variable): Input variable
        beta (float): Parameter :math:`\\beta`.
        shift (float): Shift Parameter
        threshold (float): threshold to avoid overflow

    Returns:
        output (Variable): Output variable whose shape is same with `x`
    """
    xp = chainer.cuda.get_array_module(x)
    cond = chainer.as_variable(x).array > threshold
    x = functions.where(cond, x,
                        functions.softplus(x, beta=beta))
    x += xp.log(shift)
    return x 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:20,代碼來源:shifted_softplus.py

示例6: evaluation

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def evaluation(model, test_image_folder, image_size=256):
    @chainer.training.make_extension()
    def _eval(trainer, it):
        xp = model.xp
        batch = it.next()
        batchsize = len(batch)

        x = xp.zeros((batchsize, 3, image_size, image_size)).astype("f")
        m = xp.zeros((batchsize, 3, image_size, image_size)).astype("f")
        for i in range(batchsize):
            x[i, :] = xp.asarray(batch[i][0])
            m[i, :] = xp.asarray(batch[i][1])
        mask_b = xp.array(m.astype("bool"))

        I_gt = Variable(x)
        M = Variable(m)
        M_b = Variable(mask_b)
        
        I_out = model(x, m)
        I_comp = F.where(M_b,I_gt,I_out)

        img = I_comp.data.get()

        img = batch_postprocess_images(img, int(batchsize/2), 2)
        Image.fromarray(img).save(test_image_folder+"/iter_"+str(trainer.updater.iteration)+"_Icomp.jpg")

        img = I_out.data.get()

        img = batch_postprocess_images(img, int(batchsize/2), 2)
        Image.fromarray(img).save(test_image_folder+"/iter_"+str(trainer.updater.iteration)+"_Iout.jpg")

        img = M.data.get()

        img = batch_postprocess_images(img, int(batchsize/2), 2)
        Image.fromarray(img).save(test_image_folder+"/iter_"+str(trainer.updater.iteration)+"_mask.jpg")

    def evaluation(trainer):
        it = trainer.updater.get_iterator('test')
        _eval(trainer, it)

    return evaluation 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:43,代碼來源:evaluation.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def __call__(self, x, mask):
        #h = self.c(x) - self.b
        self.m.W.data = self.xp.array(self.maskW) #mask windows are set by 1
        h = self.c(x*mask) #(B,C,H,W)
        B,C,H,W = h.shape
        #b = F.transpose(F.broadcast_to(self.c.b,(B,H,W,C)),(0,3,1,2))
        #h = h - b
        mask_sums = self.m(mask)
        mask_new = (self.xp.sign(mask_sums.data-0.5)+1.0)*0.5
        mask_new_b = mask_new.astype("bool")
        
        mask_sums = F.where(mask_new_b,mask_sums,0.01*Variable(self.xp.ones(mask_sums.shape).astype("f")))
        h = h/mask_sums 
        #h = h/mask_sums + b
         
        mask_new = Variable(mask_new)
        h = F.where(mask_new_b, h, Variable(self.xp.zeros(h.shape).astype("f"))) 

        #elif self.sample=="up":
        #    h = F.unpooling_2d(x, 2, 2, 0, cover_all=False)
        #    h = self.c(h)
        #else:
        #    print("unknown sample method %s"%self.sample)
        if self.bn:
            h = self.batchnorm(h)
        if self.noise:
            h = add_noise(h)
        if self.dropout:
            h = F.dropout(h)
        if not self.activation is None:
            h = self.activation(h)
        return h, mask_new 
開發者ID:SeitaroShinagawa,項目名稱:chainer-partial_convolution_image_inpainting,代碼行數:34,代碼來源:net_pre-trained.py

示例8: forward_expected

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def forward_expected(self, inputs):
        c, x, y = inputs
        z_expected = numpy.where(c, x, y)
        return z_expected, 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_where.py

示例9: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def forward(self, inputs, devices):
        c, x, y = inputs
        z = functions.where(c, x, y)
        return z, 
開發者ID:chainer,項目名稱:chainer,代碼行數:6,代碼來源:test_where.py

示例10: check_forward_raises

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def check_forward_raises(self, c_data, x_data, y_data):
        c = chainer.Variable(c_data)
        x = chainer.Variable(x_data)
        y = chainer.Variable(y_data)
        with pytest.raises(type_check.InvalidType):
            functions.where(c, x, y) 
開發者ID:chainer,項目名稱:chainer,代碼行數:8,代碼來源:test_where.py

示例11: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def check_backward(self, x_data, roi_data, roi_index_data, y_grad):
        def f(x, rois, roi_indices):
            y = functions.roi_max_pooling_2d(
                x, rois, roi_indices, outsize=self.outsize,
                spatial_scale=self.spatial_scale)
            xp = cuda.get_array_module(y)
            # replace -inf with zero for gradient_check
            y = functions.where(
                xp.isinf(y.array), xp.zeros(y.shape, dtype=y.dtype), y)
            return y

        gradient_check.check_backward(
            f, (x_data, roi_data, roi_index_data), y_grad,
            no_grads=[False, True, True], **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:16,代碼來源:test_roi_max_pooling_2d.py

示例12: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def check_backward(self, x_data, roi_data, roi_index_data, y_grad):
        def f(x, rois, roi_indices):
            y = functions.roi_max_align_2d(
                x, rois, roi_indices, outsize=self.outsize,
                spatial_scale=self.spatial_scale,
                sampling_ratio=self.sampling_ratio)
            xp = chainer.backend.get_array_module(y)
            y = functions.where(
                xp.isinf(y.array), xp.zeros(y.shape, dtype=y.dtype), y)
            return y

        gradient_check.check_backward(
            f, (x_data, roi_data, roi_index_data), y_grad,
            no_grads=[False, True, True], **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:16,代碼來源:test_roi_max_align_2d.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def __call__(self, x, mask=None):
        x = F.dropout(x, ratio=self.dropout)
        out, pregate = F.split_axis(self.conv(x), 2, axis=1)
        out = out * F.sigmoid(pregate)
        if mask is not None:
            out *= mask
        return out

# TODO: For layers whose output is not directly fed to a gated linear
# unit, we initialize weights from N (0, p 1/nl) where nl is the number of
# input connections for each neuron. 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:13,代碼來源:net.py

示例14: attention_implementation

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def attention_implementation(self, query, key, value, mask=None, dropout_ratio=None):
        scores = F.matmul(query, F.transpose(key, (0, 1, 3, 2))) / math.sqrt(self.key_dimensionality)
        if mask is not None:
            batch_size, num_heads, _, _ = scores.shape
            mask = self.xp.array(mask)
            mask = self.xp.broadcast_to(mask, (batch_size, num_heads) + mask.shape[2:])
            mask = mask[:, :, :scores.shape[2], :scores.shape[3]]
            scores = F.where(mask, scores, self.xp.full_like(scores.array, -1e9))

        attention_probabilities = F.softmax(scores, axis=3)
        if dropout_ratio is not None:
            attention_probabilities = F.dropout(attention_probabilities, ratio=dropout_ratio)

        return F.matmul(attention_probabilities, value), attention_probabilities 
開發者ID:chainer,項目名稱:models,代碼行數:16,代碼來源:attention.py

示例15: test_output

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import where [as 別名]
def test_output(self):
        model = chainer.Sequential(
            F.where
        )
        cond = np.array([[1, 0, 0], [0, 1, 0]], dtype=np.bool)
        x = input_generator.increasing(2, 3)
        y = np.zeros((2, 3), np.float32)
        self.expect(model, (cond, x, y), skip_opset_version=[7, 8]) 
開發者ID:chainer,項目名稱:onnx-chainer,代碼行數:10,代碼來源:test_arrays.py


注:本文中的chainer.functions.where方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。