本文整理匯總了Python中chainer.functions.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.tile方法的具體用法?Python functions.tile怎麽用?Python functions.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: process_trajectory
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def process_trajectory(self, l):
"""This is the time-dependent convolution operation, applied to a trajectory (in order).
"""
shp = l.shape[0]
# First dim is batchsize=1, then either 1 channel for 2d conv or n_feat channels
# for 1d conv.
l = F.expand_dims(l, axis=0)
l = F.transpose(l, (0, 2, 1))
l = self.traj_c0(l)
l = F.leaky_relu(l)
l = self.traj_c1(l)
l = F.leaky_relu(l)
l = F.sum(l, axis=(0, 2)) / l.shape[0] / l.shape[2]
l = F.expand_dims(l, axis=0)
l = self.traj_d0(l)
l = F.tile(l, (shp, 1))
return l
示例2: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def __call__(self, x, *args):
"""
Args:
x (ndarray): Shape is (Batch * K, 7, t).
each set has (xi, yi, zi, ri, xi −vx, yi −vy, zi −vz).
vx, vy, vz is local mean at each voxel.
Return:
y (ndarray): Shape is (Batch * K, 128)
"""
n_batch, n_channels, n_points = x.shape
# mask = F.max(x, axis=(1, 2), keepdims=True).data != 0
mask = F.max(x, axis=1, keepdims=True).data != 0
active_length = 0 #mask.sum()
# Convolution1D -> BN -> relu -> pool -> concat
h = F.relu(self.bn1(self.conv1(x), active_length, mask))
global_feat = F.max_pooling_nd(h, n_points)
# Shape is (Batch, channel, points)
global_feat_expand = F.tile(global_feat, (1, 1, n_points))
h = F.concat((h, global_feat_expand))
h *= mask
h = self.conv2(h)
return F.squeeze(F.max_pooling_nd(h, n_points))
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def __call__(self, x, pid):
x = self.bn(x)
x = F.swapaxes(x, axis1=1, axis2=3)
y = F.expand_dims(F.expand_dims(pid, axis=-1), axis=-1)
y = F.tile(y, reps=(1, 1, self.audio_window_size, 1))
x = F.concat((x, y), axis=1)
x = self.branch(x)
x = F.reshape(x, shape=(x.shape[0], -1))
x = F.concat((x, pid), axis=1)
x = self.fc1(x)
x = F.tanh(x)
x = self.fc2(x)
return x
示例4: categorical_kl
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def categorical_kl(params0, params1):
params0 = params0[0]
params1 = params1[0]
assert params0.shape == params1.shape
a0 = params0 - F.tile(F.max(params0, axis=1, keepdims=True), (1, 4))
a1 = params1 - F.tile(F.max(params1, axis=1, keepdims=True), (1, 4))
ea0 = F.exp(a0)
ea1 = F.exp(a1)
z0 = F.tile(F.sum(ea0, axis=1, keepdims=True), (1, 4))
z1 = F.tile(F.sum(ea1, axis=1, keepdims=True), (1, 4))
p0 = ea0 / z0
return F.sum(p0 * (a0 - F.log(z0) - a1 + F.log(z1)), axis=1)
示例5: _process_trajectory
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def _process_trajectory(self, traj):
proc_traj_in = F.concat(
[traj] + self._pi_f(traj[..., :self._env_dim]) + \
[F.tile(self._mem.f(), (traj.shape[0], 1)).data],
axis=1
)
return self._loss.process_trajectory(proc_traj_in)
示例6: _compute_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def _compute_loss(self, traj, processed_traj):
loss_inputs = [traj, processed_traj] + \
self._pi_f(traj[..., :self._env_dim]) + \
[F.tile(self._mem.f(), (traj.shape[0], 1))]
loss_inputs = F.concat(loss_inputs, axis=1)
epg_surr_loss = self._loss.loss(loss_inputs)
return epg_surr_loss
示例7: _pi_f
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def _pi_f(self, x):
return [self._pi.f(x), F.tile(self._logstd, (x.shape[0], 1))]
示例8: forward_expected
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def forward_expected(self, inputs):
x, = inputs
y_expected = numpy.tile(x, self.reps)
return y_expected,
示例9: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def forward(self, inputs, devices):
x, = inputs
y = functions.tile(x, self.reps)
return y,
示例10: test_value_error
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def test_value_error(self):
x = numpy.random.uniform(-1, 1, (2,)).astype(numpy.float32)
with self.assertRaises(ValueError):
functions.tile(x, self.reps)
示例11: test_reps_not_int
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def test_reps_not_int(self):
with self.assertRaises(TypeError):
functions.tile(self.x, 'a')
示例12: test_x_not_ndarray_or_variable
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def test_x_not_ndarray_or_variable(self):
with self.assertRaises(TypeError):
functions.tile((self.x, self.x), 2)
示例13: negative_log_likelihood
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def negative_log_likelihood(self, x, y):
pi, mu, log_var = self.get_gaussian_params(x)
# Likelihood over different Gaussians
y = F.tile(y[:, None, :], (1, self.gaussian_mixtures, 1))
pi = F.tile(F.expand_dims(pi, 2), (1, 1, self.input_dim))
squared_sigma = F.exp(log_var)
sigma = F.sqrt(squared_sigma)
prob = F.sum(pi * distributions.Normal(mu, sigma).prob(y), axis=1)
negative_log_likelihood = -F.log(prob)
return F.mean(negative_log_likelihood)
示例14: look_at
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def look_at(vertices, eye, at=None, up=None):
"""
"Look at" transformation of vertices.
"""
assert (vertices.ndim == 3)
xp = chainer.cuda.get_array_module(vertices)
batch_size = vertices.shape[0]
if at is None:
at = xp.array([0, 0, 0], 'float32')
if up is None:
up = xp.array([0, 1, 0], 'float32')
if isinstance(eye, list) or isinstance(eye, tuple):
eye = xp.array(eye, 'float32')
if eye.ndim == 1:
eye = cf.tile(eye[None, :], (batch_size, 1))
if at.ndim == 1:
at = cf.tile(at[None, :], (batch_size, 1))
if up.ndim == 1:
up = cf.tile(up[None, :], (batch_size, 1))
# create new axes
z_axis = cf.normalize(at - eye)
x_axis = cf.normalize(neural_renderer.cross(up, z_axis))
y_axis = cf.normalize(neural_renderer.cross(z_axis, x_axis))
# create rotation matrix: [bs, 3, 3]
r = cf.concat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), axis=1)
if r.shape[0] != vertices.shape[0]:
r = cf.broadcast_to(r, (vertices.shape[0], 3, 3))
# apply
# [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3]
if vertices.shape != eye.shape:
eye = cf.broadcast_to(eye[:, None, :], vertices.shape)
vertices = vertices - eye
vertices = cf.matmul(vertices, r, transb=True)
return vertices
示例15: _compute_ddqn_losses
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import tile [as 別名]
def _compute_ddqn_losses(self, exp_batch, errors_out=None):
"""Compute the Q-learning losses for a batch of experiences
Args:
exp_batch (dict): A dict of batched arrays of transitions
Returns:
Computed loss from the minibatch of experiences
"""
y, t = self._compute_y_and_ts(exp_batch)
n_branches = exp_batch['action'].shape[1]
# Calculate the errors_out for priorities with the 1-step err
del errors_out[:]
delta = F.absolute(y - t)
if delta.ndim == 2:
delta = F.sum(delta, axis=1)
delta = cuda.to_cpu(delta.array)
for e in delta:
errors_out.append(e)
is_1_step = self.xp.abs(1. - exp_batch["is_n_step"]).reshape(-1, 1)
is_1_step = self.xp.tile(is_1_step, (1, n_branches)).reshape(-1)
is_n_step = exp_batch['is_n_step'].reshape(-1, 1)
is_n_step = self.xp.tile(is_n_step, (1, n_branches)).reshape(-1)
weights = exp_batch['weights'].reshape(-1, 1)
weights = F.tile(weights, (1, n_branches)).reshape(-1)
loss_1step = compute_weighted_value_loss(
y, t, weights,
mask=is_1_step,
clip_delta=self.clip_delta,
batch_accumulator=self.batch_accumulator)
loss_nstep = compute_weighted_value_loss(
y, t, weights,
mask=is_n_step,
clip_delta=self.clip_delta,
batch_accumulator=self.batch_accumulator)
return loss_nstep, loss_1step