當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.swapaxes方法代碼示例

本文整理匯總了Python中chainer.functions.swapaxes方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.swapaxes方法的具體用法?Python functions.swapaxes怎麽用?Python functions.swapaxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.swapaxes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: channel_shuffle

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def channel_shuffle(x,
                    groups):
    """
    Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,'
    https://arxiv.org/abs/1707.01083.

    Parameters:
    ----------
    x : chainer.Variable or numpy.ndarray or cupy.ndarray
        Input variable.
    groups : int
        Number of groups.

    Returns
    -------
    chainer.Variable or numpy.ndarray or cupy.ndarray
        Resulted variable.
    """
    batch, channels, height, width = x.shape
    channels_per_group = channels // groups
    x = F.reshape(x, shape=(batch, groups, channels_per_group, height, width))
    x = F.swapaxes(x, axis1=1, axis2=2)
    x = F.reshape(x, shape=(batch, channels, height, width))
    return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:26,代碼來源:common.py

示例2: channel_shuffle2

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def channel_shuffle2(x,
                     groups):
    """
    Channel shuffle operation from 'ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,'
    https://arxiv.org/abs/1707.01083. The alternative version.

    Parameters:
    ----------
    x : chainer.Variable or numpy.ndarray or cupy.ndarray
        Input variable.
    groups : int
        Number of groups.

    Returns
    -------
    chainer.Variable or numpy.ndarray or cupy.ndarray
        Resulted variable.
    """
    batch, channels, height, width = x.shape
    channels_per_group = channels // groups
    x = F.reshape(x, shape=(batch, channels_per_group, groups, height, width))
    x = F.swapaxes(x, axis1=1, axis2=2)
    x = F.reshape(x, shape=(batch, channels, height, width))
    return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:26,代碼來源:common.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def __call__(self, inputs):
        pos_x, pos_y, offset_x, ego_x, ego_y, pose_x, pose_y = self._prepare_input(inputs)
        batch_size, past_len, _ = pos_x.shape

        h_pos = self.pos_encoder(pos_x)
        h_ego = self.ego_encoder(ego_x)
        h = F.concat((h_pos, h_ego), axis=1)  # (B, C, 2)
        h = self.inter(h)
        h_pos = self.pos_decoder(h)
        pred_y = self.last(h_pos)  # (B, 10, C+6+28)
        pred_y = F.swapaxes(pred_y, 1, 2)
        pred_y = pred_y[:, :pos_y.shape[1], :]
        loss = F.mean_squared_error(pred_y, pos_y)

        pred_y = pred_y + F.broadcast_to(F.expand_dims(offset_x, 1), pred_y.shape)
        pred_y = cuda.to_cpu(pred_y.data) * self._std + self._mean
        return loss, pred_y, None 
開發者ID:takumayagi,項目名稱:fpl,代碼行數:19,代碼來源:cnn.py

示例4: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def forward(self, xs, ilens):
        """Subsample x.

        :param chainer.Variable x: input tensor
        :return: subsampled x and mask

        """
        xs = self.xp.array(xs[:, None])
        xs = F.relu(self.conv1(xs))
        xs = F.relu(self.conv2(xs))
        batch, _, length, _ = xs.shape
        xs = self.out(F.swapaxes(xs, 1, 2).reshape(batch * length, -1))
        xs = self.pe(xs.reshape(batch, length, -1))
        # change ilens accordingly
        ilens = np.ceil(np.array(ilens, dtype=np.float32) / 2).astype(np.int)
        ilens = np.ceil(np.array(ilens, dtype=np.float32) / 2).astype(np.int)
        return xs, ilens 
開發者ID:espnet,項目名稱:espnet,代碼行數:19,代碼來源:subsampling.py

示例5: propdown

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def propdown(self, hid):
        """ This function propagates the hidden units activation downwords to the visible units
        :param hid: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)  - given h_sample
        :return: Variable Matrix(batch_size, in_channels, image_height, image_width) - probability for each visible units to be v_j = 1
        """
        batch_size = hid.data.shape[0]
        if self.real == 0:
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            pre_sigmoid_activation = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
                # F.matmul(hid, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible))
            v_mean = F.sigmoid(pre_sigmoid_activation)
            #print('W info ', self.conv.W.data.shape, 'W_flipped info ', W_flipped.data.shape)
            #print('W info ', self.conv.W.data[3, 0, 2, 3], 'W_flipped info ', W_flipped.data[0, 3, 8, 7])
            #print('W info ', self.conv.W.data[3, 0, 8, 7], 'W_flipped info ', W_flipped.data[0, 3, 2, 3])
            #print('W info ', self.conv.W.data[19, 0, 4, 0], 'W_flipped info ', W_flipped.data[0, 19, 6, 10])
            #print('pre_sigmoidactivation', F.sum(pre_sigmoid_activation).data)
            #print('v_mean', v_mean.data.shape)
            #print('v_mean sum', F.sum(v_mean).data)
            #print('hid', hid.data.shape)

        else:
            # TODO: check
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            v_mean = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
        return v_mean 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:27,代碼來源:convolution_rbm.py

示例6: reconstruct

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def reconstruct(self, v):
        """

        :param v: Variable Matrix(batch_size, in_channels, image_height, image_width)
        :return: reconstructed_v, Variable Matrix(batch_size, in_channels, image_height, image_width)
        """
        batch_size = v.data.shape[0]
        xp = cuda.get_array_module(v.data)
        if self.real == 0:
            h = F.sigmoid(self.conv(v))
        else:
            std_ch = xp.reshape(self.std, (1, self.in_channels, 1, 1))
            h = F.sigmoid(self.conv(v / std_ch))
        # F.sigmoid(F.matmul(v, self.l.W, transb=True) + F.broadcast_to(self.l.b, (batch_size, self.n_hidden)))
        W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
        reconstructed_v = F.sigmoid(F.convolution_2d(h, W_flipped, self.conv.a, pad=self.ksize-1))
            # = F.sigmoid(F.matmul(h, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible)))
        return reconstructed_v 
開發者ID:corochann,項目名稱:SeRanet,代碼行數:20,代碼來源:convolution_rbm.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def __call__(self, xs):
        """
        Forward pass of a sentence.
        :param xs: a batch of sentences
        :return h: final hidden states
        """
        xs = self.embed(xs)
        xs = F.swapaxes(xs, 0, 1) # time, batch, embed
        self.rnn.reset_state()
        for x in xs:
            h = self.rnn(x)
        h = F.tanh(self.linear(h))
        return h 
開發者ID:Pinafore,項目名稱:qb,代碼行數:15,代碼來源:main.py

示例8: reorganize_by_head

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def reorganize_by_head(Q, n_heads):
    mb_size, n_Q, d_model = Q.data.shape
    assert d_model%n_heads == 0
    head_size = d_model // n_heads
    reshaped_Q = F.reshape(Q, (mb_size, n_Q, n_heads, head_size))
    return F.swapaxes(reshaped_Q, 1, 2) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:8,代碼來源:multi_attention.py

示例9: undo_reorganize_by_head

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def undo_reorganize_by_head(Q):
    mb_size, n_heads, n_Q, head_size = Q.data.shape
    swapped_Q = F.swapaxes(Q, 1, 2)
    return F.reshape(swapped_Q, (mb_size, n_Q, -1)) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:6,代碼來源:multi_attention.py

示例10: assign

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def assign(self, target : 'Object'):

        # unimplemented
        temp = np.array(0)
        for v in dir(temp):
            func = values.Object(
                values.FuncValue(functions.UnimplementedFunction(v), target, None))
            target.attributes.set_predefined_obj(str(v), func)

        shape_func = values.Object(
            values.FuncValue(NDArrayShapeFunction(), target, None))
        target.attributes.set_predefined_obj('shape', shape_func)

        size_func = values.Object(
            values.FuncValue(NDArraySizeFunction(), target, None))
        target.attributes.set_predefined_obj('size', size_func)

        cumsum_func = values.Object(
            values.FuncValue(NDArrayCumsumFunction(), target, None))
        target.attributes.set_predefined_obj('cumsum', cumsum_func)

        def add_chainer_function(func):
            func_ = values.Object(
                values.FuncValue(NDArrayChainerFunction(func), target, None))
            target.attributes.set_predefined_obj(func.__name__, func_)

        add_chainer_function(F.reshape)
        add_chainer_function(F.sum)
        add_chainer_function(F.swapaxes)
        add_chainer_function(F.transpose) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:32,代碼來源:functions_ndarray.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def forward(self, xs, ilens):
        '''VGG2L forward

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))

        # x: utt x frame x dim
        xs = F.pad_sequence(xs)

        # x: utt x 1 (input channel num) x frame x dim
        xs = F.swapaxes(F.reshape(
            xs, (xs.shape[0], xs.shape[1], self.in_channel, xs.shape[2] // self.in_channel)), 1, 2)

        xs = F.relu(self.conv1_1(xs))
        xs = F.relu(self.conv1_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        xs = F.relu(self.conv2_1(xs))
        xs = F.relu(self.conv2_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        # change ilens accordingly
        # EDIT(hamaji): ChxVM puts int32 on GPU and it hurts the performance.
        # TODO(hamaji): Fix device assignment to get rid of this change.
        ilens = (ilens + 1) // 2
        ilens = (ilens + 1) // 2
        # ilens = self.xp.array(self.xp.ceil(self.xp.array(
        #     ilens, dtype=np.float32) / 2), dtype=np.int32)
        # ilens = self.xp.array(self.xp.ceil(self.xp.array(
        #     ilens, dtype=np.float32) / 2), dtype=np.int32)

        # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
        xs = F.swapaxes(xs, 1, 2)
        xs = F.reshape(
            xs, (xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3]))
        xs = [xs[i, :ilens[i], :] for i in range(len(ilens))]

        return xs, ilens 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:43,代碼來源:EspNet_VGG2L.py

示例12: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def forward(self, x):
        y1 = F.swapaxes(x, 1, 3)
        y2 = F.swapaxes(x, 0, 1)
        return y1, y2


# ====================================== 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:9,代碼來源:SwapAxes.py

示例13: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def forward(self, xs, ilens):
        '''VGG2L forward

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))

        # x: utt x frame x dim
        xs = F.pad_sequence(xs)

        # x: utt x 1 (input channel num) x frame x dim
        xs = F.swapaxes(F.reshape(
            xs, (xs.shape[0], xs.shape[1], self.in_channel, xs.shape[2] // self.in_channel)), 1, 2)

        xs = F.relu(self.conv1_1(xs))
        xs = F.relu(self.conv1_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        xs = F.relu(self.conv2_1(xs))
        xs = F.relu(self.conv2_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        # change ilens accordingly
        # EDIT(hamaji): XCVM puts int32 on GPU and it hurts the performance.
        # TODO(hamaji): Fix device assignment to get rid of this change.
        ilens = (ilens + 1) // 2
        ilens = (ilens + 1) // 2
        # ilens = self.xp.array(self.xp.ceil(self.xp.array(
        #     ilens, dtype=np.float32) / 2), dtype=np.int32)
        # ilens = self.xp.array(self.xp.ceil(self.xp.array(
        #     ilens, dtype=np.float32) / 2), dtype=np.int32)

        # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
        xs = F.swapaxes(xs, 1, 2)
        xs = F.reshape(
            xs, (xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3]))
        xs = [xs[i, :ilens[i], :] for i in range(len(ilens))]

        return xs, ilens 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:43,代碼來源:EspNet_VGG2L.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def forward(self, x):
        y1 = F.swapaxes(x, 1, 3)
        y2 = F.swapaxes(x, 0, 1)
        return y1, y2 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:6,代碼來源:SwapAxes.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import swapaxes [as 別名]
def __call__(self, x, batch_size):
        # x: (BT, F)
        # TODO: if chainer >= 5.0, use linear functions with 'n_batch_axes'
        # and x be (B, T, F), then remove batch_size.
        q = self.linearQ(x).reshape(batch_size, -1, self.h, self.d_k)
        k = self.linearK(x).reshape(batch_size, -1, self.h, self.d_k)
        v = self.linearV(x).reshape(batch_size, -1, self.h, self.d_k)
        scores = F.matmul(
            F.swapaxes(q, 1, 2), k.transpose(0, 2, 3, 1)) / np.sqrt(self.d_k)
        # scores: (B, h, T, T)
        self.att = F.softmax(scores, axis=3)
        p_att = F.dropout(self.att, self.dropout)
        x = F.matmul(p_att, F.swapaxes(v, 1, 2))
        x = F.swapaxes(x, 1, 2).reshape(-1, self.h * self.d_k)
        return self.linearO(x) 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:17,代碼來源:transformer.py


注:本文中的chainer.functions.swapaxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。