當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.sum方法代碼示例

本文整理匯總了Python中chainer.functions.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.sum方法的具體用法?Python functions.sum怎麽用?Python functions.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def __call__(self, x):
        if self.dr:
            with chainer.using_config('train', True):
                x = F.dropout(x, self.dr)
        if self.gap:
            x = F.sum(x, axis=(2,3))
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(F.leaky_relu(x), (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: setUp

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def setUp(self):

        def evaluator(actions):
            # negative square norm of actions
            return -F.sum(actions ** 2, axis=1)

        self.evaluator = evaluator

        if self.has_maximizer:
            def maximizer():
                return chainer.Variable(np.zeros(
                    (self.batch_size, self.action_size), dtype=np.float32))
        else:
            maximizer = None
        self.maximizer = maximizer
        self.av = action_value.SingleActionValue(
            evaluator=evaluator, maximizer=maximizer) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:test_action_value.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]
        ya = self.a_stream(h)
        mean = F.reshape(
            F.sum(ya, axis=1) / self.n_actions, (batch_size, 1))
        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = self.v_stream(h)

        ya, ys = F.broadcast(ya, ys)
        q = ya + ys
        return action_value.DiscreteActionValue(q) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:dueling_dqn.py

示例4: compute_policy_gradient_full_correction

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def compute_policy_gradient_full_correction(
        action_distrib, action_distrib_mu, action_value, v,
        truncation_threshold):
    """Compute off-policy bias correction term wrt all actions."""
    assert truncation_threshold is not None
    assert np.isscalar(v)
    with chainer.no_backprop_mode():
        rho_all_inv = compute_full_importance(action_distrib_mu,
                                              action_distrib)
        correction_weight = (
            np.maximum(1 - truncation_threshold * rho_all_inv,
                       np.zeros_like(rho_all_inv)) *
            action_distrib.all_prob.array[0])
        correction_advantage = action_value.q_values.array[0] - v
    return -F.sum(correction_weight *
                  action_distrib.all_log_prob *
                  correction_advantage, axis=1) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:acer.py

示例5: compute_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def compute_value_loss(eltwise_loss, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example
        batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
            the loss values in a batch. 'sum' will use the sum.
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    assert eltwise_loss.ndim == 3

    if batch_accumulator == 'sum':
        # mean over N_prime, then sum over (batch_size, N)
        loss = F.sum(F.mean(eltwise_loss, axis=2))
    else:
        # mean over (batch_size, N_prime), then sum over N
        loss = F.sum(F.mean(eltwise_loss, axis=(0, 2)))

    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:iqn.py

示例6: compute_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def compute_value_loss(eltwise_loss, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example per atom
        batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
            the loss values in a batch. 'sum' will use the sum.
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')

    if batch_accumulator == 'sum':
        loss = F.sum(eltwise_loss)
    else:
        loss = F.mean(F.sum(eltwise_loss, axis=1))
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:categorical_dqn.py

示例7: compute_weighted_value_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def compute_weighted_value_loss(eltwise_loss, batch_size, weights,
                                batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        eltwise_loss (Variable): Element-wise loss per example per atom
        weights (ndarray): Weights for y, t.
        batch_accumulator (str): 'mean' will divide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')

    # eltwise_loss is (batchsize, n_atoms) array of losses
    # weights is an array of shape (batch_size)
    # sum loss across atoms and then apply weight per example in batch
    loss_sum = F.matmul(F.sum(eltwise_loss, axis=1), weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / batch_size
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:24,代碼來源:categorical_dqn.py

示例8: _compute_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def _compute_loss(self, exp_batch, errors_out=None):
        """Compute a loss of categorical DQN."""
        y, t = self._compute_y_and_t(exp_batch)
        # Minimize the cross entropy
        # y is clipped to avoid log(0)
        eltwise_loss = -t * F.log(F.clip(y, 1e-10, 1.))

        if errors_out is not None:
            del errors_out[:]
            # The loss per example is the sum of the atom-wise loss
            # Prioritization by KL-divergence
            delta = F.sum(eltwise_loss, axis=1)
            delta = cuda.to_cpu(delta.array)
            for e in delta:
                errors_out.append(e)

        if 'weights' in exp_batch:
            return compute_weighted_value_loss(
                eltwise_loss, y.shape[0], exp_batch['weights'],
                batch_accumulator=self.batch_accumulator)
        else:
            return compute_value_loss(
                eltwise_loss, batch_accumulator=self.batch_accumulator) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:25,代碼來源:categorical_dqn.py

示例9: _sample_discrete_actions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def _sample_discrete_actions(batch_probs):
    """Sample a batch of actions from a batch of action probabilities.

    Args:
      batch_probs (ndarray): batch of action probabilities BxA
    Returns:
      List consisting of sampled actions
    """
    action_indices = []

    # Subtract a tiny value from probabilities in order to avoid
    # "ValueError: sum(pvals[:-1]) > 1.0" in numpy.multinomial
    batch_probs = batch_probs - np.finfo(np.float32).epsneg

    for i in range(batch_probs.shape[0]):
        histogram = np.random.multinomial(1, batch_probs[i])
        action_indices.append(int(np.nonzero(histogram)[0]))
    return action_indices 
開發者ID:muupan,項目名稱:async-rl,代碼行數:20,代碼來源:policy_output.py

示例10: softmax_cross_entropy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def softmax_cross_entropy(self, y, t):
        import numpy as np

        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # self.batch_size = chainer.Variable(np.array(t.size, np.float32),
        #                                    name='batch_size')
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        batch_size = chainer.Variable(np.array(t.shape[0], np.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        loss = -log_prob / batch_size
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:23,代碼來源:nin.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def forward(self, x, t):
        xp = cuda.get_array_module(x)
        y = self.predictor(x)
        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        batch_size = chainer.Variable(xp.array(t.size, xp.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        loss = -log_prob / batch_size
        reporter.report({'loss': loss}, self)
        if self.compute_accuracy:
            acc = accuracy.accuracy(y, xp.argmax(t, axis=1))
            reporter.report({'accuracy': acc}, self)
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:25,代碼來源:gen_mnist_mlp.py

示例12: softmax_cross_entropy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def softmax_cross_entropy(self, y, t):
        import numpy as np

        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # self.batch_size = chainer.Variable(np.array(t.size, np.float32),
        #                                    name='batch_size')
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        batch_size = chainer.Variable(self.xp.array(t.shape[0], np.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        loss = -log_prob / batch_size
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:23,代碼來源:resnet50.py

示例13: listmle

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def listmle(x, t):
    """
    The ListMLE loss as in Xia et al (2008), Listwise Approach to Learning to
    Rank - Theory and Algorithm.

    :param x: The activation of the previous layer
    :param t: The target labels
    :return: The loss
    """

    # Get the ground truth by sorting activations by the relevance labels
    xp = cuda.get_array_module(t)
    t_hat = t[:, 0]
    x_hat = x[xp.flip(xp.argsort(t_hat), axis=0)]

    # Compute MLE loss
    final = logcumsumexp(x_hat)
    return F.sum(final - x_hat) 
開發者ID:rjagerman,項目名稱:shoelace,代碼行數:20,代碼來源:listwise.py

示例14: listpl

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def listpl(x, t, α=15.0):
    """
    The ListPL loss, a stochastic variant of ListMLE that in expectation
    approximates the true ListNet loss.

    :param x: The activation of the previous layer
    :param t: The target labels
    :param α: The smoothing factor
    :return: The loss
    """

    # Sample permutation from PL(t)
    index = _pl_sample(t, α)
    x = x[index]

    # Compute MLE loss
    final = logcumsumexp(x)
    return F.sum(final - x) 
開發者ID:rjagerman,項目名稱:shoelace,代碼行數:20,代碼來源:listwise.py

示例15: _pl_sample

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sum [as 別名]
def _pl_sample(t, α):
    """
    Sample from the plackett luce distribution directly

    :param t: The target labels
    :return: A random permutation from the plackett-luce distribution
             parameterized by the target labels
    """
    xp = cuda.get_array_module(t)
    t = t[:, 0]

    probs = xp.exp(t * α)
    probs /= xp.sum(probs)

    # Use CPU-based numpy implementation, because cupy.random.choice with
    # replace=False does not work
    probs = cuda.to_cpu(probs)
    result = np.random.choice(probs.shape[0], probs.shape[0], replace=False,
                              p=probs)
    return xp.array(result, copy=False) 
開發者ID:rjagerman,項目名稱:shoelace,代碼行數:22,代碼來源:listwise.py


注:本文中的chainer.functions.sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。