當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.stack方法代碼示例

本文整理匯總了Python中chainer.functions.stack方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.stack方法的具體用法?Python functions.stack怎麽用?Python functions.stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: batch_pit_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def batch_pit_loss(ys, ts, label_delay=0):
    """
    PIT loss over mini-batch.

    Args:
      ys: B-length list of predictions
      ts: B-length list of labels

    Returns:
      loss: (1,)-shape mean cross entropy over mini-batch
      labels: B-length list of permuted labels
    """
    loss_w_labels = [pit_loss(y, t)
                     for (y, t) in zip(ys, ts)]
    losses, labels = zip(*loss_w_labels)
    loss = F.sum(F.stack(losses))
    n_frames = np.sum([t.shape[0] for t in ts])
    loss = loss / n_frames
    return loss, labels 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:21,代碼來源:models.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __call__(self, xs, ts):
        _, ys, ems = self.forward(xs)
        # PIT loss
        loss, labels = batch_pit_loss(ys, ts)
        reporter.report({'loss_pit': loss}, self)
        report_diarization_error(ys, labels, self)
        # DPCL loss
        loss_dc = F.sum(
            F.stack([dc_loss(em, t) for (em, t) in zip(ems, ts)]))
        n_frames = np.sum([t.shape[0] for t in ts])
        loss_dc = loss_dc / (n_frames ** 2)
        reporter.report({'loss_dc': loss_dc}, self)
        # Multi-objective
        loss = (1 - self.dc_loss_ratio) * loss + self.dc_loss_ratio * loss_dc
        reporter.report({'loss': loss}, self)

        return loss 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:19,代碼來源:models.py

示例3: inverse

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def inverse(self, y):
        scale_sqr = self.scale * self.scale
        batch, y_channels, y_height, y_width = y.shape
        assert (y_channels % scale_sqr == 0)
        x_channels = y_channels // scale_sqr
        x_height = y_height * self.scale
        x_width = y_width * self.scale

        x = F.transpose(y, axes=(0, 2, 3, 1))
        x = x.reshape(batch, y_height, y_width, scale_sqr, x_channels)
        d3_split_seq = F.split_axis(x, indices_or_sections=(x.shape[3] // self.scale), axis=3)
        d3_split_seq = [t.reshape(batch, y_height, x_width, x_channels) for t in d3_split_seq]
        x = F.stack(d3_split_seq, axis=0)
        x = F.transpose(F.swapaxes(x, axis1=0, axis2=1), axes=(0, 2, 1, 3, 4)).reshape(
            batch, x_height, x_width, x_channels)
        x = F.transpose(x, axes=(0, 3, 1, 2))
        return x 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:19,代碼來源:irevnet.py

示例4: test_hook_for_funcnode

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def test_hook_for_funcnode(self, test_type):
        class Model(chainer.Chain):

            def forward(self, x):
                if test_type in ['variable', 'array']:
                    x = [chainer.as_variable(x)]
                elif test_type == 'dict':
                    x = list(x.values())
                x.append(chainer.Variable(np.array(7, np.float32)))
                return F.stack(x)

        model = Model()
        x = self.get_x(test_type)
        with RetainInputHook() as h:
            model(x)
        expected_count = 1
        if test_type == 'array':
            # input is ndarray and not checked in forward_preprocess
            expected_count += 1
        assert len(h.retain_inputs) == expected_count 
開發者ID:chainer,項目名稱:chainer,代碼行數:22,代碼來源:test_inout.py

示例5: predict

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def predict(self, images, return_visual_backprop=False):
        with chainer.using_device(self.device):
            if isinstance(images, list):
                images = [self.xp.array(image) for image in images]
                images = self.xp.stack(images, axis=0)

            visual_backprop = None
            with chainer.using_config('train', False):
                roi, bbox = self(images)
                rois = [roi]
                bboxes = [bbox]
                if return_visual_backprop:
                    if not hasattr(self, 'visual_backprop'):
                        self.visual_backprop = VisualBackprop()
                    visual_backprop = self.visual_backprop.perform_visual_backprop(self.visual_backprop_anchors[0])

        bboxes = F.stack(bboxes, axis=1)
        bboxes = F.reshape(bboxes, (-1,) + bboxes.shape[2:])
        rois = F.stack(rois, axis=1)
        rois = F.reshape(rois, (-1,) + rois.shape[2:])

        return rois, bboxes, visual_backprop 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:24,代碼來源:text_localizer.py

示例6: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __call__(self, rois):
        batch_size, num_bboxes, num_channels, height, width = rois.shape
        rois = F.reshape(rois, (-1, num_channels, height, width))

        # if not chainer.config.user_text_recognition_grayscale_input:
        #     # convert data to grayscale
        #     assert rois.shape[1] == 3, "rois are not in RGB, can not convert them to grayscale"
        #     r, g, b = F.separate(rois, axis=1)
        #     grey = 0.299 * r + 0.587 * g + 0.114 * b
        #     rois = F.stack([grey, grey, grey], axis=1)

        h = self.feature_extractor(rois)
        _, num_channels, feature_height, feature_width = h.shape
        h = F.average_pooling_2d(h, (feature_height, feature_width))

        h = F.reshape(h, (batch_size, num_bboxes, num_channels, -1))

        all_predictions = []
        for box in F.separate(h, axis=1):
            # box_predictions = [self.classifier(self.lstm(box)) for _ in range(self.num_chars)]
            box_predictions = [self.classifier(box) for _ in range(self.num_chars)]
            all_predictions.append(F.stack(box_predictions, axis=1))

        # return shape: batch_size, num_bboxes, num_chars, num_classes
        return F.stack(all_predictions, axis=2) 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:27,代碼來源:text_recognizer.py

示例7: calc_bboxes

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def calc_bboxes(self, predicted_bboxes, image_size, out_size):
        predicted_bboxes = (predicted_bboxes + 1) / 2
        x_points = predicted_bboxes[:, 0, ...] * image_size.width
        y_points = predicted_bboxes[:, 1, ...] * image_size.height
        top_left_x = F.get_item(x_points, [..., 0, 0])
        top_left_y = F.get_item(y_points, [..., 0, 0])
        bottom_right_x = F.get_item(x_points, [..., out_size.height - 1, out_size.width - 1])
        bottom_right_y = F.get_item(y_points, [..., out_size.height - 1, out_size.width - 1])

        bboxes = F.stack(
            [
                F.minimum(top_left_x, bottom_right_x),
                F.minimum(top_left_y, bottom_right_y),
                F.maximum(top_left_x, bottom_right_x),
                F.maximum(top_left_y, bottom_right_y),
            ],
            axis=1
        )
        return bboxes 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:21,代碼來源:utils.py

示例8: loadData

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def loadData(self, num):
        # ===== Initialize variables ===== #
        N = self.N
        M = self.M
        
        # ===== Load data ===== #
        audio_spec = [xp.load(os.path.join(DATA_DIR_SPEC, "{}.npz".format(i)))["mix"].T[xp.newaxis,:,:] for i in num]

        N_index = xp.random.randint(0,audio_spec[0].shape[1]-N)
        audio_spec = xp.stack([i[:,N_index:(N_index+N),:] for i in audio_spec])
        
        M_index = int(N_index/4)
        face1 = [ (xp.array(pd.read_csv(os.path.join(DATA_DIR_VISUAL, "{}/speech1.csv".format(i)), header=None)).T[:,:,xp.newaxis].astype(xp.float32) / 255.) for i in num]        
        face1 = xp.stack([i[:,M_index:(M_index+M),:] for i in face1])
        face2 = [ (xp.array(pd.read_csv(os.path.join(DATA_DIR_VISUAL, "{}/speech2.csv".format(i)), header=None)).T[:,:,xp.newaxis].astype(xp.float32) / 255.) for i in num]        
        face2 = xp.stack([i[:,M_index:(M_index+M),:] for i in face2])
        
        true_spec = xp.stack(
                [xp.load(os.path.join(DATA_DIR_SPEC, "{}.npz".format(i)))["true"].T[N_index:(N_index+N),:] \
                 for i in num])

        true_spec /= ( xp.max(true_spec) * 1.1 )
    
        return audio_spec, face1, face2, true_spec 
開發者ID:crystal-method,項目名稱:Looking-to-Listen,代碼行數:26,代碼來源:network.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __call__(self, h):
        # type: (chainer.Variable) -> chainer.Variable
        xp = cuda.get_array_module(h)
        mb, node, ch = h.shape  # type: int, int, int
        if self.q_star is None:
            self.q_star = [
                xp.zeros((1, self.in_channels * 2)).astype('f')
                for _ in range(mb)
            ]
        self.hx, self.cx, q = self.lstm_layer(self.hx, self.cx, self.q_star)
        # self.hx: (mb, mb, ch)
        # self.cx: (mb, mb, ch)
        # q: List[(1, ch) * mb]
        q = functions.stack(q)  # q: (mb, 1, ch)
        q_ = functions.transpose(q, axes=(0, 2, 1))  # q_: (mb, ch, 1)
        e = functions.matmul(h, q_)  # e: (mb, node, 1)
        a = functions.softmax(e)  # a: (mb, node, 1)
        a = functions.broadcast_to(a, h.shape)  # a: (mb, node, ch)
        r = functions.sum((a * h), axis=1, keepdims=True)  # r: (mb, 1, ch)
        q_star_ = functions.concat((q, r), axis=2)  # q_star_: (mb, 1, ch*2)
        self.q_star = functions.separate(q_star_)
        return functions.reshape(q_star_, (mb, ch * 2)) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:24,代碼來源:set2set.py

示例10: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def forward(self, x, y):
        y1 = F.stack((x, y))
        return y1 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:5,代碼來源:Stack.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def forward(self, x, y):
        y1 = F.stack((x, y))
        y2 = np.stack([x, y])
        return y1, y2 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:6,代碼來源:Stack.py

示例12: pit_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def pit_loss(pred, label, label_delay=0):
    """
    Permutation-invariant training (PIT) cross entropy loss function.

    Args:
      pred:  (T,C)-shaped pre-activation values
      label: (T,C)-shaped labels in {0,1}
      label_delay: if label_delay == 5:
           pred: 0 1 2 3 4 | 5 6 ... 99 100 |
          label: x x x x x | 0 1 ... 94  95 | 96 97 98 99 100
          calculated area: | <------------> |

    Returns:
      min_loss: (1,)-shape mean cross entropy
      label_perms[min_index]: permutated labels
    """
    # label permutations along the speaker axis
    label_perms = [label[..., list(p)] for p
                   in permutations(range(label.shape[-1]))]
    losses = F.stack(
        [F.sigmoid_cross_entropy(
            pred[label_delay:, ...],
            l[:len(l) - label_delay, ...]) for l in label_perms])
    xp = cuda.get_array_module(losses)
    min_loss = F.min(losses) * (len(label) - label_delay)
    min_index = cuda.to_cpu(xp.argmin(losses.data))

    return min_loss, label_perms[min_index] 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:30,代碼來源:models.py

示例13: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __call__(self, x):
        import numpy as np

        heatmap = x[:, :-4].array
        wh = x[:, -4:-2].array
        reg = x[:, -2:].array
        batch, _, out_h, out_w = heatmap.shape

        heatmap_flat = heatmap.reshape((batch, -1))
        indices = np.argsort(heatmap_flat)[:, -self.topk:]
        scores = np.take_along_axis(heatmap_flat, indices=indices, axis=-1)
        topk_classes = (indices // (out_h * out_w)).astype(dtype=np.float32)
        topk_indices = indices % (out_h * out_w)
        topk_ys = (topk_indices // out_w).astype(dtype=np.float32)
        topk_xs = (topk_indices % out_w).astype(dtype=np.float32)
        center = reg.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
        wh = wh.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
        xs = np.take_along_axis(center[:, :, 0], indices=topk_indices, axis=-1)
        ys = np.take_along_axis(center[:, :, 1], indices=topk_indices, axis=-1)
        topk_xs = topk_xs + xs
        topk_ys = topk_ys + ys
        w = np.take_along_axis(wh[:, :, 0], indices=topk_indices, axis=-1)
        h = np.take_along_axis(wh[:, :, 1], indices=topk_indices, axis=-1)
        half_w = 0.5 * w
        half_h = 0.5 * h
        bboxes = F.stack((topk_xs - half_w, topk_ys - half_h, topk_xs + half_w, topk_ys + half_h), axis=-1)

        bboxes = bboxes * self.scale
        topk_classes = F.expand_dims(topk_classes, axis=-1)
        scores = F.expand_dims(scores, axis=-1)
        result = F.concat((bboxes, topk_classes, scores), axis=-1)
        return result 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:34,代碼來源:centernet.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __call__(self, x):
        batch, x_channels, x_height, x_width = x.shape
        y_channels = x_channels * self.scale * self.scale
        assert (x_height % self.scale == 0)
        y_height = x_height // self.scale

        y = F.transpose(x, axes=(0, 2, 3, 1))
        d2_split_seq = F.split_axis(y, indices_or_sections=(y.shape[2] // self.scale), axis=2)
        d2_split_seq = [t.reshape(batch, y_height, y_channels) for t in d2_split_seq]
        y = F.stack(d2_split_seq, axis=1)
        y = F.transpose(y, axes=(0, 3, 2, 1))
        return y 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:14,代碼來源:irevnet.py

示例15: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import stack [as 別名]
def __init__(self,
                 axis=1,
                 stack=False):
        super(Concurrent, self).__init__()
        self.axis = axis
        self.stack = stack 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:8,代碼來源:common.py


注:本文中的chainer.functions.stack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。