本文整理匯總了Python中chainer.functions.squeeze方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.squeeze方法的具體用法?Python functions.squeeze怎麽用?Python functions.squeeze使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.squeeze方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def update(self, loss):
self.average_loss += (
(1 - self.average_loss_decay) *
(asfloat(loss) - self.average_loss))
# Compute gradients using thread-specific model
self.model.cleargrads()
F.squeeze(loss).backward()
if self.train_async:
# Copy the gradients to the globally shared model
copy_param.copy_grad(
target_link=self.shared_model, source_link=self.model)
if self.process_idx == 0:
xp = self.xp
norm = sum(xp.sum(xp.square(param.grad))
for param in self.optimizer.target.params()
if param.grad is not None)
self.logger.debug('grad norm:%s', norm)
self.optimizer.update()
if self.train_async:
self.sync_parameters()
if isinstance(self.model, Recurrent):
self.model.unchain_backward()
示例2: accumulate_grad
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def accumulate_grad(self):
if self.n_backward == 0:
self.model.cleargrads()
# Compute losses
losses = []
for r_seq, log_prob_seq, ent_seq in zip(self.reward_sequences,
self.log_prob_sequences,
self.entropy_sequences):
assert len(r_seq) - 1 == len(log_prob_seq) == len(ent_seq)
# Convert rewards into returns (=sum of future rewards)
R_seq = np.cumsum(list(reversed(r_seq[1:])))[::-1]
for R, log_prob, entropy in zip(R_seq, log_prob_seq, ent_seq):
loss = -R * log_prob - self.beta * entropy
losses.append(loss)
total_loss = chainerrl.functions.sum_arrays(losses)
# When self.batchsize is future.types.newint.newint, dividing a
# Variable with it will raise an error, so it is manually converted to
# float here.
total_loss /= float(self.batchsize)
F.squeeze(total_loss).backward()
self.reward_sequences = [[]]
self.log_prob_sequences = [[]]
self.entropy_sequences = [[]]
self.n_backward += 1
示例3: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def __call__(self, ty_args, ty_kwargs):
x_type, = ty_args
self.axis, lacks_axis = get_kwarg(ty_kwargs, 'axis', None)
if isinstance(self.axis, int):
self.axis = (self.axis,)
if is_incomplete_shape(x_type.shape):
# TODO: use ty_kwargs['axis'].size()
if lacks_axis or self.axis is None:
assert False, "chainer.fucntions.squeeze: cannot guess ndim of return type"
self.check_type_forward(make_multiple_tc_variable(ty_args, ('x',)))
if self.axis is not None:
for i in self.axis:
assert x_type.shape[i] == 1, "chainer.fucntions.squeeze: invalid axis"
return self.infer_return(x_type)
示例4: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def __call__(self, x, z, ze, mask, conv_mask):
att_scale = self.xp.sum(
mask, axis=2, keepdims=True)[:, None, :, :] ** 0.5
pad = self.xp.zeros(
(x.shape[0], x.shape[1], self.width - 1, 1), dtype=x.dtype)
base_x = x
z = F.squeeze(z, axis=3)
# Note: these behaviors of input, output, and attention result
# may refer to the code by authors, which looks little different
# from the paper's saying.
for conv_name, preatt_name in zip(self.conv_names, self.preatt_names):
# Calculate Output of GLU
out = getattr(self, conv_name)(
F.concat([pad, x], axis=2), conv_mask)
# Calcualte Output of Attention using Output of GLU
preatt = seq_linear(getattr(self, preatt_name), out)
query = base_x + preatt
query = F.squeeze(query, axis=3)
c = self.attend(query, z, ze, mask) * att_scale
# Merge Them in Redidual Calculation and Scaling
x = (x + (c + out) * scale05) * scale05
return x
示例5: attend
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def attend(self, encoded_features):
self.out_lstm.reset_state()
transformed_encoded_features = F.concat([F.expand_dims(self.transform_encoded_features(feature), axis=1) for feature in encoded_features], axis=1)
concat_encoded_features = F.concat([F.expand_dims(e, axis=1) for e in encoded_features], axis=1)
lstm_output = self.xp.zeros_like(encoded_features[0])
outputs = []
for _ in range(self.num_labels):
transformed_lstm_output = self.transform_out_lstm_feature(lstm_output)
attended_feats = []
for transformed_encoded_feature in F.separate(transformed_encoded_features, axis=1):
attended_feat = transformed_encoded_feature + transformed_lstm_output
attended_feat = F.tanh(attended_feat)
attended_feats.append(self.generate_attended_feat(attended_feat))
attended_feats = F.concat(attended_feats, axis=1)
alphas = F.softmax(attended_feats, axis=1)
lstm_input_feature = F.batch_matmul(alphas, concat_encoded_features, transa=True)
lstm_input_feature = F.squeeze(lstm_input_feature, axis=1)
lstm_output = self.out_lstm(lstm_input_feature)
outputs.append(lstm_output)
return outputs
示例6: decode_predictions
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def decode_predictions(self, predictions):
# concat all individual predictions and slice for each time step
predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)
words = []
with cuda.get_device_from_array(predictions.data):
for prediction in F.separate(predictions, axis=0):
prediction = F.squeeze(prediction, axis=0)
prediction = F.softmax(prediction, axis=1)
prediction = self.xp.argmax(prediction.data, axis=1)
word = self.loss_metrics.strip_prediction(prediction[self.xp.newaxis, ...])[0]
if len(word) == 1 and word[0] == 0:
return ''
word = "".join(map(self.loss_metrics.label_to_char, word))
word = word.replace(chr(self.loss_metrics.char_map[str(self.loss_metrics.blank_symbol)]), '')
words.append(word)
text = " ".join(words)
return text
示例7: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def __call__(self, x, *args):
"""
Args:
x (ndarray): Shape is (Batch * K, 7, t).
each set has (xi, yi, zi, ri, xi −vx, yi −vy, zi −vz).
vx, vy, vz is local mean at each voxel.
Return:
y (ndarray): Shape is (Batch * K, 128)
"""
n_batch, n_channels, n_points = x.shape
# mask = F.max(x, axis=(1, 2), keepdims=True).data != 0
mask = F.max(x, axis=1, keepdims=True).data != 0
active_length = 0 #mask.sum()
# Convolution1D -> BN -> relu -> pool -> concat
h = F.relu(self.bn1(self.conv1(x), active_length, mask))
global_feat = F.max_pooling_nd(h, n_points)
# Shape is (Batch, channel, points)
global_feat_expand = F.tile(global_feat, (1, 1, n_points))
h = F.concat((h, global_feat_expand))
h *= mask
h = self.conv2(h)
return F.squeeze(F.max_pooling_nd(h, n_points))
示例8: compute_loss_with_kl_constraint
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def compute_loss_with_kl_constraint(distrib, another_distrib, original_loss,
delta):
"""Compute loss considering a KL constraint.
Args:
distrib (Distribution): Distribution to optimize
another_distrib (Distribution): Distribution used to compute KL
original_loss (chainer.Variable): Loss to minimize
delta (float): Minimum KL difference
Returns:
loss (chainer.Variable)
"""
for param in distrib.params:
assert param.shape[0] == 1
assert param.requires_grad
# Compute g: a direction to minimize the original loss
g = [grad.array[0] for grad in
chainer.grad([F.squeeze(original_loss)], distrib.params)]
# Compute k: a direction to increase KL div.
kl = F.squeeze(another_distrib.kl(distrib))
k = [grad.array[0] for grad in
chainer.grad([-kl], distrib.params)]
# Compute z: combination of g and k to keep small KL div.
kg_dot = sum(np.dot(kp.ravel(), gp.ravel())
for kp, gp in zip(k, g))
kk_dot = sum(np.dot(kp.ravel(), kp.ravel()) for kp in k)
if kk_dot > 0:
k_factor = max(0, ((kg_dot - delta) / kk_dot))
else:
k_factor = 0
z = [gp - k_factor * kp for kp, gp in zip(k, g)]
loss = 0
for p, zp in zip(distrib.params, z):
loss += F.sum(p * zp)
return F.reshape(loss, original_loss.shape), float(kl.array)
示例9: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def update(self, t_start, t_stop, R, states, actions, rewards, values,
action_values, action_distribs, action_distribs_mu,
avg_action_distribs):
assert np.isscalar(R)
total_loss = self.compute_loss(
t_start=t_start,
t_stop=t_stop,
R=R,
states=states,
actions=actions,
rewards=rewards,
values=values,
action_values=action_values,
action_distribs=action_distribs,
action_distribs_mu=action_distribs_mu,
avg_action_distribs=avg_action_distribs)
# Compute gradients using thread-specific model
self.model.cleargrads()
F.squeeze(total_loss).backward()
# Copy the gradients to the globally shared model
copy_param.copy_grad(
target_link=self.shared_model, source_link=self.model)
# Update the globally shared model
if self.process_idx == 0:
norm = sum(np.sum(np.square(param.grad))
for param in self.optimizer.target.params()
if param.grad is not None)
self.logger.debug('grad norm:%s', norm)
self.optimizer.update()
self.sync_parameters()
if isinstance(self.model, Recurrent):
self.model.unchain_backward()
示例10: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def forward(self, x):
return F.squeeze(x, 1)
示例11: test_squeeze
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def test_squeeze(self):
class Test():
def forward(self):
F.squeeze(np.zeros((2, 1, 1, 3)))
F.squeeze(np.zeros((2, 1, 1, 3)), axis=2)
F.squeeze(np.zeros((2, 1, 1, 3)), axis=(1,2))
id2type = generate_id2type_from_forward(Test(), ())
self.assertEqual(str(id2type[1]), "class Test -> NoneType") # FunctionDef forward (line 1)
self.assertEqual(str(id2type[5]), "NoneType") # Expr
self.assertEqual(str(id2type[6]), "Variable(float64, (2, 3))") # Call F.squeeze(np.zeros((2, 1, 1, 3))) (line 2)
self.assertEqual(str(id2type[11]), "ndarray(float64, (2, 1, 1, 3))") # Call np.zeros((2, 1, 1, 3)) (line 2)
self.assertEqual(str(id2type[16]), "(int, int, int, int)") # Tuple (2, 1, 1, 3) (line 2)
self.assertEqual(str(id2type[17]), "int") # Num 2 (line 2)
self.assertEqual(str(id2type[18]), "int") # Num 1 (line 2)
self.assertEqual(str(id2type[19]), "int") # Num 1 (line 2)
self.assertEqual(str(id2type[20]), "int") # Num 3 (line 2)
self.assertEqual(str(id2type[22]), "NoneType") # Expr
self.assertEqual(str(id2type[23]), "Variable(float64, (2, 1, 3))") # Call F.squeeze(np.zeros((2, 1, 1, 3)), axis=2) (line 3)
self.assertEqual(str(id2type[28]), "ndarray(float64, (2, 1, 1, 3))") # Call np.zeros((2, 1, 1, 3)) (line 3)
self.assertEqual(str(id2type[33]), "(int, int, int, int)") # Tuple (2, 1, 1, 3) (line 3)
self.assertEqual(str(id2type[34]), "int") # Num 2 (line 3)
self.assertEqual(str(id2type[35]), "int") # Num 1 (line 3)
self.assertEqual(str(id2type[36]), "int") # Num 1 (line 3)
self.assertEqual(str(id2type[37]), "int") # Num 3 (line 3)
self.assertEqual(str(id2type[40]), "int") # Num 2 (line 3)
self.assertEqual(str(id2type[41]), "NoneType") # Expr
self.assertEqual(str(id2type[42]), "Variable(float64, (2, 3))") # Call F.squeeze(np.zeros((2, 1, 1, 3)), axis=(1, 2)) (line 4)
self.assertEqual(str(id2type[47]), "ndarray(float64, (2, 1, 1, 3))") # Call np.zeros((2, 1, 1, 3)) (line 4)
self.assertEqual(str(id2type[52]), "(int, int, int, int)") # Tuple (2, 1, 1, 3) (line 4)
self.assertEqual(str(id2type[53]), "int") # Num 2 (line 4)
self.assertEqual(str(id2type[54]), "int") # Num 1 (line 4)
self.assertEqual(str(id2type[55]), "int") # Num 1 (line 4)
self.assertEqual(str(id2type[56]), "int") # Num 3 (line 4)
self.assertEqual(str(id2type[59]), "(int, int)") # Tuple (1, 2) (line 4)
self.assertEqual(str(id2type[60]), "int") # Num 1 (line 4)
self.assertEqual(str(id2type[61]), "int") # Num 2 (line 4)
示例12: __call__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def __call__(self, x):
x = self.encode(x)
x = F.sum(x, axis=0) / x.shape[0]
return F.squeeze(x)
示例13: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def update(Q, target_Q, policy, target_policy, opt_Q, opt_policy,
samples, gamma=0.99):
"""Update a Q-function and a policy."""
dtype = chainer.get_dtype()
xp = Q.xp
obs = xp.asarray([sample[0] for sample in samples], dtype=dtype)
action = xp.asarray([sample[1] for sample in samples], dtype=dtype)
reward = xp.asarray([sample[2] for sample in samples], dtype=dtype)
done = xp.asarray([sample[3] for sample in samples], dtype=dtype)
obs_next = xp.asarray([sample[4] for sample in samples], dtype=dtype)
def update_Q():
# Predicted values: Q(s,a)
y = F.squeeze(Q(obs, action), axis=1)
# Target values: r + gamma * Q(s,policy(s))
with chainer.no_backprop_mode():
next_q = F.squeeze(target_Q(obs_next, target_policy(obs_next)),
axis=1)
target = reward + gamma * (1 - done) * next_q
loss = F.mean_squared_error(y, target)
Q.cleargrads()
loss.backward()
opt_Q.update()
def update_policy():
# Maximize Q(s,policy(s))
q = Q(obs, policy(obs))
q = q[:] # Avoid https://github.com/chainer/chainer/issues/2744
loss = - F.mean(q)
policy.cleargrads()
loss.backward()
opt_policy.update()
update_Q()
update_policy()
示例14: query
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def query(self, u):
xp = backend.get_array_module(u)
size = self.m.shape[1]
inds = xp.arange(size - 1, -1, -1, dtype=numpy.int32)
tm = self.TA(inds)
tc = self.TC(inds)
tm = F.broadcast_to(tm, self.m.shape)
tc = F.broadcast_to(tc, self.c.shape)
p = F.softmax(F.matmul(self.m + tm, F.expand_dims(u, -1)))
o = F.matmul(F.swapaxes(self.c + tc, 2, 1), p)
o = F.squeeze(o, -1)
u = o + u
return u
示例15: forward_expected
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import squeeze [as 別名]
def forward_expected(self, inputs):
x, = inputs
y = numpy.squeeze(x, axis=self.axis)
return y,