本文整理匯總了Python中chainer.functions.square方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.square方法的具體用法?Python functions.square怎麽用?Python functions.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.square方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _lossfun
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _lossfun(self,
entropy, vs_pred, log_probs,
vs_pred_old, log_probs_old,
advs, vs_teacher):
prob_ratio = F.exp(log_probs - log_probs_old)
loss_policy = - F.mean(F.minimum(
prob_ratio * advs,
F.clip(prob_ratio, 1 - self.clip_eps, 1 + self.clip_eps) * advs))
if self.clip_eps_vf is None:
loss_value_func = F.mean_squared_error(vs_pred, vs_teacher)
else:
loss_value_func = F.mean(F.maximum(
F.square(vs_pred - vs_teacher),
F.square(_elementwise_clip(vs_pred,
vs_pred_old - self.clip_eps_vf,
vs_pred_old + self.clip_eps_vf)
- vs_teacher)
))
loss_entropy = -F.mean(entropy)
self.value_loss_record.append(float(loss_value_func.array))
self.policy_loss_record.append(float(loss_policy.array))
loss = (
loss_policy
+ self.value_func_coef * loss_value_func
+ self.entropy_coef * loss_entropy
)
return loss
示例2: compute_weighted_value_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def compute_weighted_value_loss(y, t, weights,
clip_delta=True, batch_accumulator='mean'):
"""Compute a loss for value prediction problem.
Args:
y (Variable or ndarray): Predicted values.
t (Variable or ndarray): Target values.
weights (ndarray): Weights for y, t.
clip_delta (bool): Use the Huber loss function if set True.
batch_accumulator (str): 'mean' will divide loss by batchsize
Returns:
(Variable) scalar loss
"""
assert batch_accumulator in ('mean', 'sum')
y = F.reshape(y, (-1, 1))
t = F.reshape(t, (-1, 1))
if clip_delta:
losses = F.huber_loss(y, t, delta=1.0)
else:
losses = F.square(y - t) / 2
losses = F.reshape(losses, (-1,))
loss_sum = F.sum(losses * weights)
if batch_accumulator == 'mean':
loss = loss_sum / y.shape[0]
elif batch_accumulator == 'sum':
loss = loss_sum
return loss
示例3: _get_mean_and_std
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _get_mean_and_std(self):
mean = self.sum / self.count
std = np.sqrt(np.maximum(self.sum2 / self.count - np.square(mean), 0.01))
return mean, std
示例4: update
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def update(self, x):
self.sum += np.sum(x, axis=0)
self.sum2 += np.sum(np.square(x), axis=0)
self.count += x.shape[0]
示例5: gaussian_kl
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def gaussian_kl(params0, params1):
(mean0, logstd0), (mean1, logstd1) = params0, params1
assert mean0.shape == logstd0.shape == mean1.shape == logstd1.shape
return F.sum(
logstd1 - logstd0 + (F.square(F.exp(logstd0)) + F.square(mean0 - mean1)) / (
2.0 * F.square(F.exp(logstd1))) - 0.5,
axis=1
)
示例6: _compute_ppo_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _compute_ppo_loss(self, obs, acts, at, vt, old_params):
params = self._pi_f(obs)
cv = F.flatten(self._vf_f(obs))
ratio = F.exp(self._logp(params, acts) - self._logp(old_params, acts))
surr1 = ratio * at
surr2 = F.clip(ratio, 1 - self._ppo_clipparam, 1 + self._ppo_clipparam) * at
ppo_surr_loss = (
-sym_mean(F.minimum(surr1, surr2))
+ self._ppo_klcoeff * sym_mean(self.kl(old_params, params))
+ sym_mean(F.square(cv - vt))
)
return ppo_surr_loss
示例7: _pi_logp
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _pi_logp(self, obs, acts):
mean, logstd = self._pi_f(obs)
return (
- 0.5 * np.log(2.0 * np.pi) * acts.shape[1]
- 0.5 * F.sum(F.square((acts - mean) / (F.exp(logstd)) + 1e-8), axis=1)
- F.sum(logstd, axis=1)
)
示例8: test_chx_array_view
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def test_chx_array_view(self):
from_connected = self.from_connected
calculate_by_variable = self.calculate_by_variable
backward_by_variable = self.backward_by_variable
# Create an original array, either connected or disconnected.
a = chainerx.array([1, 2], np.float32)
if from_connected:
a.require_grad()
# Wrap with a variable
x = chainer.Variable(a, requires_grad=True)
x_arr = x.chx_array # Unwrap a view
assert x_arr.is_backprop_required()
assert not x_arr.is_grad_required()
assert a is not x_arr # x_arr is a view of a
if calculate_by_variable:
# Calculate by variable
y = F.square(x_arr)
# Unwrap the output array
y_arr = y.chx_array
y_arr.grad = chainerx.ones_like(y.array)
else:
# Calculate by array
y_arr = chainerx.square(x_arr)
y_arr.grad = chainerx.ones_like(y_arr)
# Wrap y with variable
y = chainer.Variable(y_arr, requires_grad=True)
# Backward
if backward_by_variable:
y.backward()
else:
y_arr.backward()
# x.grad is set
assert x.grad is not None
chainerx.testing.assert_array_equal_ex(
chainerx.array([2, 4], np.float32), x.grad)
示例9: get_bbox_side_lengths
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def get_bbox_side_lengths(self, grids):
x0, x1, x2, y0, y1, y2 = self.get_corners(grids)
width = F.sqrt(
F.square(x1 - x0) + F.square(y1 - y0)
)
height = F.sqrt(
F.square(x2 - x0) + F.square(y2 - y0)
)
return width, height
示例10: _smooth_l1_loss_base
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _smooth_l1_loss_base(x, t, in_weight, sigma):
sigma2 = sigma ** 2
diff = in_weight * (x - t)
abs_diff = F.absolute(diff)
flag = (abs_diff.array < (1. / sigma2)).astype(np.float32)
y = (flag * (sigma2 / 2.) * F.square(diff) +
(1 - flag) * (abs_diff - 0.5 / sigma2))
return F.sum(y, axis=1)
示例11: _smooth_l1_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _smooth_l1_loss(x, t, in_weight, sigma):
sigma2 = sigma ** 2
diff = in_weight * (x - t)
abs_diff = F.absolute(diff)
flag = (abs_diff.array < (1. / sigma2)).astype(np.float32)
y = (flag * (sigma2 / 2.) * F.square(diff) +
(1 - flag) * (abs_diff - 0.5 / sigma2))
return F.sum(y)
示例12: get_bbox_side_lengths
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def get_bbox_side_lengths(self, grids, image_size):
x0, x1, x2, _, y0, y1, y2, _ = self.get_corners(grids, image_size)
width = F.sqrt(
F.square(x1 - x0) + F.square(y1 - y0)
)
height = F.sqrt(
F.square(x2 - x0) + F.square(y2 - y0)
)
return width, height
示例13: _smooth_l1_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def _smooth_l1_loss(x, t, in_weight, sigma):
sigma2 = sigma ** 2
diff = in_weight * (x - t)
abs_diff = F.absolute(diff)
flag = (abs_diff.data < (1. / sigma2)).astype(np.float32)
y = (flag * (sigma2 / 2.) * F.square(diff) +
(1 - flag) * (abs_diff - 0.5 / sigma2))
return F.sum(y)
示例14: compute_weighted_value_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def compute_weighted_value_loss(y, t, weights,
mask, clip_delta=True,
batch_accumulator='mean'):
"""Compute a loss for value prediction problem.
Args:
y (Variable or ndarray): Predicted values.
t (Variable or ndarray): Target values.
weights (ndarray): Weights for y, t.
mask (ndarray): Mask to use for loss calculation
clip_delta (bool): Use the Huber loss function if set True.
batch_accumulator (str): 'mean' will divide loss by batchsize
Returns:
(Variable) scalar loss
"""
assert batch_accumulator in ('mean', 'sum')
y = F.reshape(y, (-1, 1))
t = F.reshape(t, (-1, 1))
if clip_delta:
losses = F.huber_loss(y, t, delta=1.0)
else:
losses = F.square(y - t) / 2
losses = F.reshape(losses, (-1,))
loss_sum = F.sum(losses * weights * mask)
if batch_accumulator == 'mean':
loss = loss_sum / max(n_mask, 1.0)
elif batch_accumulator == 'sum':
loss = loss_sum
return loss
示例15: get_var_line_length_loss
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import square [as 別名]
def get_var_line_length_loss(vertices, faces):
vertices = vertices[faces]
num_faces = vertices.shape[0]
v01 = vertices[:, 1] - vertices[:, 0]
v12 = vertices[:, 2] - vertices[:, 1]
v20 = vertices[:, 0] - vertices[:, 2]
n01_square = cf.sum(cf.square(v01), axis=1)
n12_square = cf.sum(cf.square(v12), axis=1)
n20_square = cf.sum(cf.square(v20), axis=1)
n01 = cf.sqrt(n01_square)
n12 = cf.sqrt(n12_square)
n20 = cf.sqrt(n20_square)
mean_of_square = (cf.sum(n01_square) + cf.sum(n12_square) + cf.sum(n20_square)) / (3. * num_faces)
square_of_mean = cf.square((cf.sum(n01) + cf.sum(n12) + cf.sum(n20)) / (3. * num_faces))
return (mean_of_square - square_of_mean) * num_faces