本文整理匯總了Python中chainer.functions.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.sqrt方法的具體用法?Python functions.sqrt怎麽用?Python functions.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: feature_vector_normalization
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def feature_vector_normalization(x, eps=1e-8):
# x: (B, C, H, W)
alpha = 1.0 / F.sqrt(F.mean(x * x, axis=1, keepdims=True) + eps)
return F.broadcast_to(alpha, x.data.shape) * x
示例2: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def __init__(self, in_ch, out_ch, ksize, stride, pad, nobias=False, gain=np.sqrt(2), lrmul=1):
w = chainer.initializers.Normal(1.0/lrmul) # equalized learning rate
self.inv_c = gain * np.sqrt(1.0 / (in_ch * ksize ** 2))
self.inv_c = self.inv_c * lrmul
super(EqualizedConv2d, self).__init__()
with self.init_scope():
self.c = L.Convolution2D(in_ch, out_ch, ksize, stride, pad, initialW=w, nobias=nobias)
示例3: minibatch_std
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def minibatch_std(x):
m = F.mean(x, axis=0, keepdims=True)
v = F.mean((x - F.broadcast_to(m, x.shape)) * (x - F.broadcast_to(m, x.shape)), axis=0, keepdims=True)
std = F.mean(F.sqrt(v + 1e-8), keepdims=True)
std = F.broadcast_to(std, (x.shape[0], 1, x.shape[2], x.shape[3]))
return F.concat([x, std], axis=1)
示例4: forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def forward(self, x):
y1 = F.sqrt(x)
y2 = np.sqrt(x)
return y1, y2
示例5: main
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def main():
np.random.seed(314)
x = np.random.rand(6, 4).astype(np.float32)
s_int = np.array(-10)
s_float = np.array(10.0)
testtools.generate_testcase(Sin(), [x], subname='sin')
testtools.generate_testcase(Sinh(), [x], subname='sinh')
testtools.generate_testcase(Sign(), [x], subname='sign')
testtools.generate_testcase(Cos(), [x], subname='cos')
testtools.generate_testcase(Cosh(), [x], subname='cosh')
testtools.generate_testcase(Tan(), [x], subname='tan')
testtools.generate_testcase(Tanh(), [x], subname='tanh')
testtools.generate_testcase(ArcSin(), [x], subname='arcsin')
testtools.generate_testcase(ArcCos(), [x], subname='arccos')
testtools.generate_testcase(ArcTan(), [x], subname='arctan')
testtools.generate_testcase(Exp(), [x], subname='exp')
testtools.generate_testcase(Log(), [x], subname='log')
testtools.generate_testcase(Clip(), [x], subname='clip')
testtools.generate_testcase(ClipNp(), [x], subname='clip_np')
testtools.generate_testcase(Abs(), [x], subname='abs')
testtools.generate_testcase(AbsNp(), [x], subname='abs_np')
testtools.generate_testcase(Sqrt(), [x], subname='sqrt')
testtools.generate_testcase(Round(), [x], subname='round')
testtools.generate_testcase(AbsBuiltin(), [x], subname='abs_builtin')
testtools.generate_testcase(AbsBuiltin(), [s_float], subname='abs_builtin_scalar_float')
testtools.generate_testcase(AbsBuiltin(), [s_int], subname='abs_builtin_scalar_int')
示例6: rsqrt
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def rsqrt(x, dtype):
return numpy.reciprocal(numpy.sqrt(x, dtype=dtype), dtype=dtype)
示例7: get_bbox_side_lengths
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def get_bbox_side_lengths(self, grids):
x0, x1, x2, y0, y1, y2 = self.get_corners(grids)
width = F.sqrt(
F.square(x1 - x0) + F.square(y1 - y0)
)
height = F.sqrt(
F.square(x2 - x0) + F.square(y2 - y0)
)
return width, height
示例8: get_normalized_vector
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def get_normalized_vector(d, xp=None, shape=None):
if shape is None:
shape = tuple(range(1, len(d.shape)))
d_norm = d
if xp is not None:
d_norm = d / (1e-12 + xp.max(xp.abs(d), shape, keepdims=True))
d_norm = d_norm / xp.sqrt(1e-6 + xp.sum(d_norm ** 2, shape, keepdims=True))
else:
d_term = 1e-12 + F.max(F.absolute(d), shape, keepdims=True)
d_norm = d / F.broadcast_to(d_term, d.shape)
d_term = F.sqrt(1e-6 + F.sum(d ** 2, shape, keepdims=True))
d_norm = d / F.broadcast_to(d_term, d.shape)
return d_norm
示例9: get_normalized_vector
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def get_normalized_vector(d, xp=None):
shape = tuple(range(1, len(d.shape)))
if xp is not None:
d /= (1e-12 + xp.max(xp.abs(d), shape, keepdims=True))
d /= xp.sqrt(1e-6 + xp.sum(d ** 2, shape, keepdims=True))
else:
d_term = 1e-12 + F.max(F.absolute(d), shape, keepdims=True)
d /= F.broadcast_to(d_term, d.shape)
d_term = F.sqrt(1e-6 + F.sum(d ** 2, shape, keepdims=True))
d /= F.broadcast_to(d_term, d.shape)
return d
示例10: norm_by_freq
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def norm_by_freq(self, freq):
word_embs = self.W
mean = F.sum(freq * word_embs, axis=0, keepdims=True)
mean = F.broadcast_to(mean, word_embs.shape)
var = F.sum(freq * ((word_embs - mean) ** 2), axis=0, keepdims=True)
var = F.broadcast_to(var, word_embs.shape)
stddev = F.sqrt(1e-6 + var)
word_embs_norm = (word_embs - mean) / stddev
return word_embs_norm
示例11: negative_log_likelihood
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def negative_log_likelihood(self, x, y):
pi, mu, log_var = self.get_gaussian_params(x)
# Likelihood over different Gaussians
y = F.tile(y[:, None, :], (1, self.gaussian_mixtures, 1))
pi = F.tile(F.expand_dims(pi, 2), (1, 1, self.input_dim))
squared_sigma = F.exp(log_var)
sigma = F.sqrt(squared_sigma)
prob = F.sum(pi * distributions.Normal(mu, sigma).prob(y), axis=1)
negative_log_likelihood = -F.log(prob)
return F.mean(negative_log_likelihood)
示例12: gelu
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def gelu(x):
return 0.5 * x * (1 + F.tanh(math.sqrt(2 / math.pi)
* (x + 0.044715 * (x ** 3))))
示例13: _attn
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def _attn(self, q, k, v):
w = F.batch_matmul(q.reshape(-1, *q.shape[-2:]),
k.reshape(-1, *k.shape[-2:]))
if self.scale:
w = w / math.sqrt(v.shape[-1])
# TF implem method: mask_attn_weights
w = w * self.b.array[0] + -1e9 * (1 - self.b.array[0])
w = F.softmax(w, axis=2)
w = self.attn_dropout(w)
return F.batch_matmul(w, v.reshape(-1, *v.shape[-2:]))\
.reshape(v.shape[0], v.shape[1], v.shape[2], -1)
示例14: feature_vector_normalization
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def feature_vector_normalization(x, eps=1e-8):
# x: (B, C, H, W)
alpha = 1.0 / F.sqrt(F.mean(x*x, axis=1, keepdims=True) + eps)
return F.broadcast_to(alpha, x.data.shape) * x
示例15: __init__
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sqrt [as 別名]
def __init__(self, in_ch, out_ch, ksize, stride, pad):
w = chainer.initializers.Normal(1.0) # equalized learning rate
self.inv_c = np.sqrt(2.0/(in_ch*ksize**2))
super(EqualizedConv2d, self).__init__()
with self.init_scope():
self.c = L.Convolution2D(in_ch, out_ch, ksize, stride, pad, initialW=w)