當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.split_axis方法代碼示例

本文整理匯總了Python中chainer.functions.split_axis方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.split_axis方法的具體用法?Python functions.split_axis怎麽用?Python functions.split_axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.split_axis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def __call__(self, prev_hg, prev_he, prev_ce, x, v, r, u):
        xu = cf.concat((x, u), axis=1)
        xu = self.downsample_xu(xu)
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_he, prev_hg, xu, v, r), axis=1)
        gate_inputs = self.lstm(lstm_input)

        if self.use_cuda_kernel:
            next_h, next_c = CoreFunction()(gate_inputs, prev_ce)
        else:
            forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
                gate_inputs, 4, axis=1)

            forget_gate = cf.sigmoid(forget_gate_input)
            input_gate = cf.sigmoid(input_gate_input)
            next_c = forget_gate * prev_ce + input_gate * cf.tanh(tanh_input)
            output_gate = cf.sigmoid(output_gate_input)
            next_h = output_gate * cf.tanh(next_c)

        return next_h, next_c 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:25,代碼來源:inference.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def __call__(self, prev_hg, prev_cg, prev_z, v, r, prev_u):
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_hg, v, r, prev_z), axis=1)
        gate_inputs = self.lstm(lstm_input)

        forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
            gate_inputs, 4, axis=1)

        forget_gate = cf.sigmoid(forget_gate_input)
        input_gate = cf.sigmoid(input_gate_input)
        next_c = forget_gate * prev_cg + input_gate * cf.tanh(tanh_input)
        output_gate = cf.sigmoid(output_gate_input)
        next_h = output_gate * cf.tanh(next_c)

        next_u = self.upsample_h(next_h) + prev_u

        return next_h, next_c, next_u 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:22,代碼來源:generator.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]

        h = self.activation(self.main_stream(h))
        h_a, h_v = F.split_axis(h, 2, axis=-1)
        ya = F.reshape(self.a_stream(h_a),
                       (batch_size, self.n_actions, self.n_atoms))

        mean = F.sum(ya, axis=1, keepdims=True) / self.n_actions

        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = F.reshape(self.v_stream(h_v), (batch_size, 1, self.n_atoms))
        ya, ys = F.broadcast(ya, ys)
        q = F.softmax(ya + ys, axis=2)

        return action_value.DistributionalDiscreteActionValue(q, self.z_values) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:26,代碼來源:dueling_dqn.py

示例4: split_one_step_batch_input

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def split_one_step_batch_input(xs):
    """Split one-step batch input.

    Args:
        xs (chainer.Variable, ndarray or tuple): One-step batched input. It
            should be either:
                - a variable whose first axis is the batch axis.
                - a tuple of such variables.

    Returns:
        list: Either a list of variables or a list of tuples of varialbes.
            The length of the list is the batch size of the input.
    """
    if isinstance(xs, tuple):
        return list(zip(*[split_one_step_batch_input(x) for x in xs]))
    else:
        return list(F.split_axis(xs, len(xs), axis=0)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:19,代碼來源:stateless_recurrent.py

示例5: channelwise_inhibited

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def channelwise_inhibited(self, h):
        self.c = random.randint(0, 2)
        xp = cuda.get_array_module(h.data)
        num = h.data.shape[0]

        h = F.split_axis(h, 3, 1)
        c = F.reshape(h[self.c], (num, 16, 16))
        z = Variable(xp.zeros_like(c.data), 'AUTO')
        c = F.batch_matmul(c, z)
        c = F.reshape(c, (num, 1, 16, 16))
        hs = []
        for i, s in enumerate(h):
            if i == self.c:
                hs.append(c)
            else:
                hs.append(s)
        return F.concat(hs, 1) 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:19,代碼來源:MnihCNN_rcis.py

示例6: channelwise_inhibited

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def channelwise_inhibited(self, h):
        xp = cuda.get_array_module(h.data)
        num = h.data.shape[0]

        h = F.split_axis(h, 3, 1)
        c = F.reshape(h[self.c], (num, 16, 16))
        z = Variable(xp.zeros_like(c.data), 'AUTO')
        c = F.batch_matmul(c, z)
        c = F.reshape(c, (num, 1, 16, 16))
        hs = []
        for i, s in enumerate(h):
            if i == self.c:
                hs.append(c)
            else:
                hs.append(s)
        return F.concat(hs, 1) 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例7: apply_to_seq

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def apply_to_seq(self, seq_list):
        mb_size = len(seq_list)
        mb_initial_cell, mb_initial_state = self.get_initial_states(mb_size)
        return self.nstep_lstm(mb_initial_cell, mb_initial_state, seq_list)


# class DoubleGRU(Chain):
#     def __init__(self, H, I):
#         log.info("using double GRU")
#         self.H1 = H/2
#         self.H2 = H - self.H1
#         super(DoubleGRU, self).__init__(
#             gru1 = faster_gru.GRU(self.H1, I),
#             gru2 = faster_gru.GRU(self.H2, self.H1)
#         )
#
#     def __call__(self, prev_state, inpt):
#         prev_state1, prev_state2 = F.split_axis(prev_state, (self.H1,), axis = 1)
#
#         prev_state1 = self.gru1(prev_state1, inpt)
#         prev_state2 = self.gru2(prev_state2, prev_state1)
#
#         return F.concat((prev_state1, prev_state2), axis = 1) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:rnn_cells.py

示例8: advance_state

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def advance_state(self, previous_states, prev_y):
        current_mb_size = prev_y.data.shape[0]
        assert self.mb_size is None or current_mb_size <= self.mb_size

        if current_mb_size < len(previous_states[0].data):
            truncated_states = [None] * len(previous_states)
            for num_state in six.moves.range(len(previous_states)):
                truncated_states[num_state], _ = F.split_axis(
                    previous_states[num_state], (current_mb_size,), 0)
            previous_states = tuple(truncated_states)

        output_state = previous_states[-1]
        if self.decoder_chain.use_goto_attention:
            ci, attn = self.compute_ctxt(output_state, prev_y)
        else:
            ci, attn = self.compute_ctxt(output_state)
        concatenated = F.concat((prev_y, ci))

        new_states = self.decoder_chain.gru(previous_states, concatenated)
        return new_states, concatenated, attn 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:22,代碼來源:decoder_cells.py

示例9: faster_call2

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def faster_call2(self, h, x):
        r_z_h_x = self.W_r_z_h(x)

        r_z_h = self.U_r_z(h)

        r_x, z_x, h_x = split_axis(r_z_h_x, (self.n_units, self.n_units * 2), axis=1)
        assert r_x.data.shape[1] == self.n_units
        assert z_x.data.shape[1] == self.n_units
        assert h_x.data.shape[1] == self.n_units

        r_h, z_h = split_axis(r_z_h, (self.n_units,), axis=1)
#         r = sigmoid.sigmoid(r_x + r_h)
#         z = sigmoid.sigmoid(z_x + z_h)
#         h_bar = tanh.tanh(h_x + self.U(sigm_a_plus_b_by_h(r_x, r_h, h)))
#         h_new = (1 - z) * h + z * h_bar
#         return h_new

        return compute_output_GRU(z_x, z_h, h_x, h, self.U(sigm_a_plus_b_by_h_fast(r_x, r_h, h))) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:20,代碼來源:faster_gru.py

示例10: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def forward(self, xs, ilens):
        '''BLSTM forward (the modified version)

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)
        hy, cy, ys = self.nblstm(None, None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        del hy, cy

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # EDIT(hamaji): Unnecessary, as `force_tuple` is True by default.
        # # 1 utterance case, it becomes an array, so need to make a utt tuple
        # if not isinstance(xs, tuple):
        #     xs = [xs]

        return xs, ilens  # x: utt list of frame x dim 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:26,代碼來源:EspNet_BLSTM.py

示例11: original

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def original(self, xs, ilens):
        '''BLSTM forward (the original implementation)

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)
        hy, cy, ys = self.nblstm(None, None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        del hy, cy

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), axis=0)

        # 1 utterance case, it becomes an array, so need to make a utt tuple
        if not isinstance(xs, tuple):
            xs = [xs]

        return xs, ilens  # x: utt list of frame x dim 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:25,代碼來源:EspNet_BLSTM.py

示例12: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def forward(self, xs, ilens):
        '''BLSTM forward (the modified version)

        :param xs:
        :param ilens:
        :return:
        '''
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))
        # need to move ilens to cpu
        ilens = cuda.to_cpu(ilens)
        hy, cy, ys = self.nblstm(None, None, xs)
        ys = self.l_last(F.vstack(ys))  # (sum _utt frame_utt) x dim
        xs = F.split_axis(ys, np.cumsum(ilens[:-1]), 0)
        del hy, cy

        # final tanh operation
        xs = F.split_axis(F.tanh(F.vstack(xs)), np.cumsum(ilens[:-1]), 0)

        # EDIT(hamaji): Unnecessary, as `force_tuple` is True by default.
        # # 1 utterance case, it becomes an array, so need to make a utt tuple
        # if not isinstance(xs, tuple):
        #     xs = [xs]

        return xs, ilens  # x: utt list of frame x dim 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:26,代碼來源:EspNet_BLSTM.py

示例13: test_type_hints

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def test_type_hints(self):
        class Test():
            def forward(self, x: types.TyNdarray(np.float32, ('a', 'b'))):
                h = F.split_axis(x, 2, 1)
                return h

        model, forward_args = Test(), (np.zeros((10, 10)).astype(np.float32),)
        id2type = generate_id2type_from_forward(model, forward_args)

        self.assertEqual(str(id2type[1]), "class Test -> ndarray(float32, (10 (a), 10 (b))) -> (Variable(float32, (10 (a), 5 (b // 2))), Variable(float32, (10 (a), 5 (b // 2))))")	# FunctionDef forward (line 1)
        self.assertEqual(str(id2type[20]), "NoneType")	# Assign
        self.assertEqual(str(id2type[21]), "(Variable(float32, (10 (a), 5 (b // 2))), Variable(float32, (10 (a), 5 (b // 2))))")	# Name h (line 2)
        self.assertEqual(str(id2type[23]), "(Variable(float32, (10 (a), 5 (b // 2))), Variable(float32, (10 (a), 5 (b // 2))))")	# Call F.split_axis(x, 2, 1) (line 2)
        self.assertEqual(str(id2type[28]), "ndarray(float32, (10 (a), 10 (b)))")	# Name x (line 2)
        self.assertEqual(str(id2type[30]), "int")	# Constant 2 (line 2)
        self.assertEqual(str(id2type[31]), "int")	# Constant 1 (line 2)
        self.assertEqual(str(id2type[32]), "(Variable(float32, (10 (a), 5 (b // 2))), Variable(float32, (10 (a), 5 (b // 2))))")	# Return
        self.assertEqual(str(id2type[33]), "(Variable(float32, (10 (a), 5 (b // 2))), Variable(float32, (10 (a), 5 (b // 2))))")	# Name h (line 3) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:Shape_test.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def __call__(self, s, xs):
        """Calculate all hidden states and cell states.
        Args:
            s  (~chainer.Variable or None): Initial (hidden & cell) states. If ``None``
                is specified zero-vector is used.
            xs (list of ~chianer.Variable): List of input sequences.
                Each element ``xs[i]`` is a :class:`chainer.Variable` holding
                a sequence.
        Return:
            (hy,cy): a pair of hidden and cell states at the end of the sequence,
            ys: a hidden state sequence at the last layer
        """
        if len(xs) > 1:
            sections = np.cumsum(np.array([len(x) for x in xs[:-1]], dtype=np.int32))
            xs = F.split_axis(self.embed(F.concat(xs, axis=0)), sections, axis=0)
        else:
            xs = [ self.embed(xs[0]) ]
        if s is not None:
            hy, cy, ys = self.lstm(s[0], s[1], xs)
        else:
            hy, cy, ys = self.lstm(None, None, xs)

        return (hy,cy), ys 
開發者ID:dialogtekgeek,項目名稱:DSTC6-End-to-End-Conversation-Modeling,代碼行數:25,代碼來源:lstm_encoder.py

示例15: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import split_axis [as 別名]
def forward(self, xs, hs=None, activation=None):
        if hs is not None:
            hx1, cx1, hx_emb, cx_emb = hs
        else:
            hx1 = cx1 = hx_emb = cx_emb = None
        # forward to LSTM layers
        hy_emb, cy_emb, ems = self.bi_lstm_emb(hx_emb, cx_emb, xs)
        hy1, cy1, ys = self.bi_lstm1(hx1, cx1, ems)
        # main branch
        ys_stack = F.vstack(ys)
        ys = self.linear1(ys_stack)
        if activation:
            ys = activation(ys)
        ilens = [x.shape[0] for x in xs]
        ys = F.split_axis(ys, np.cumsum(ilens[:-1]), axis=0)
        # embedding branch
        ems_stack = F.vstack(ems)
        ems = F.normalize(F.tanh(self.linear2(ems_stack)))
        ems = F.split_axis(ems, np.cumsum(ilens[:-1]), axis=0)

        if not isinstance(ys, tuple):
            ys = [ys]
            ems = [ems]
        return [hy1, cy1, hy_emb, cy_emb], ys, ems 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:26,代碼來源:models.py


注:本文中的chainer.functions.split_axis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。