當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.softplus方法代碼示例

本文整理匯總了Python中chainer.functions.softplus方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.softplus方法的具體用法?Python functions.softplus怎麽用?Python functions.softplus使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.softplus方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shifted_softplus

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def shifted_softplus(x, beta=1, shift=0.5, threshold=20):
    """shifted softplus function, which holds f(0)=0.

     Args:
        x (Variable): Input variable
        beta (float): Parameter :math:`\\beta`.
        shift (float): Shift Parameter
        threshold (float): threshold to avoid overflow

    Returns:
        output (Variable): Output variable whose shape is same with `x`
    """
    xp = chainer.cuda.get_array_module(x)
    cond = chainer.as_variable(x).array > threshold
    x = functions.where(cond, x,
                        functions.softplus(x, beta=beta))
    x += xp.log(shift)
    return x 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:20,代碼來源:shifted_softplus.py

示例2: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def __init__(self, n_actions, n_input_channels=4, activation=F.relu,
                 bias=0.1, var_param_init=0,  # var_func=F.softplus,
                 hiddens=None):
        self.n_input_channels = n_input_channels
        self.activation = activation
        self.hiddens = [512] if hiddens is None else hiddens
        # self.var_func = var_func

        super(ActorTRPONetForContinuous, self).__init__()
        with self.init_scope():
            self.conv_layers = chainer.ChainList(
                L.Convolution2D(n_input_channels, 32, 8, stride=4,
                                initial_bias=bias),
                L.Convolution2D(32, 64, 4, stride=2, initial_bias=bias),
                L.Convolution2D(64, 64, 3, stride=1, initial_bias=bias))
            self.a_stream = chainerrl.links.mlp.MLP(None, n_actions, self.hiddens)
            self.var_param = chainer.Parameter(initializer=var_param_init,
                                               shape=(1,))
            # self.var_param = chainer.Parameter(
            #     initializer=var_param_init, shape=(n_actions,))  # independent 
開發者ID:minerllabs,項目名稱:baselines,代碼行數:22,代碼來源:policies.py

示例3: _tanh_forward_log_det_jacobian

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def _tanh_forward_log_det_jacobian(x):
    """Compute log|det(dy/dx)| except summation where y=tanh(x)."""
    # For the derivation of this formula, see:
    # https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py  # NOQA
    return 2. * (np.log(2.) - x - F.softplus(-2. * x)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:7,代碼來源:distribution.py

示例4: compute_mean_and_var

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def compute_mean_and_var(self, x):
        h = x
        for layer in self.hidden_layers:
            h = self.nonlinearity(layer(h))
        mean = self.mean_layer(h)
        if self.bound_mean:
            mean = bound_by_tanh(mean, self.min_action, self.max_action)
        var = F.broadcast_to(F.softplus(self.var_layer(h)), mean.shape) + \
            self.min_var
        return mean, var 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:12,代碼來源:gaussian_policy.py

示例5: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def __init__(self, n_input_channels, action_size,
                 n_hidden_layers=0, n_hidden_channels=None,
                 min_action=None, max_action=None, bound_mean=False,
                 var_type='spherical',
                 nonlinearity=F.relu,
                 mean_wscale=1,
                 var_func=F.softplus,
                 var_param_init=0,
                 ):

        self.n_input_channels = n_input_channels
        self.action_size = action_size
        self.n_hidden_layers = n_hidden_layers
        self.n_hidden_channels = n_hidden_channels
        self.min_action = min_action
        self.max_action = max_action
        self.bound_mean = bound_mean
        self.nonlinearity = nonlinearity
        self.var_func = var_func
        var_size = {'spherical': 1, 'diagonal': action_size}[var_type]

        layers = []
        layers.append(L.Linear(n_input_channels, n_hidden_channels))
        for _ in range(n_hidden_layers - 1):
            layers.append(self.nonlinearity)
            layers.append(L.Linear(n_hidden_channels, n_hidden_channels))
        layers.append(self.nonlinearity)
        # The last layer is used to compute the mean
        layers.append(
            L.Linear(n_hidden_channels, action_size,
                     initialW=LeCunNormal(mean_wscale)))

        if self.bound_mean:
            layers.append(lambda x: bound_by_tanh(
                x, self.min_action, self.max_action))

        super().__init__()
        with self.init_scope():
            self.hidden_layers = links.Sequence(*layers)
            self.var_param = chainer.Parameter(
                initializer=var_param_init, shape=(var_size,)) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:43,代碼來源:gaussian_policy.py

示例6: compute_mean_and_var

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def compute_mean_and_var(self, x):
        # mean = F.relu(self.mean_layer_1(x))
        # mean = self.bn_mean(mean)
        mean = self.mean_layer_2(x)

        # var = F.relu(self.var_layer_1(x))
        # var = self.bn_var(var)
        var = F.softplus(self.var_layer_2(x))
        return mean, var 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:11,代碼來源:cn_agents.py

示例7: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def forward(self, inputs, device):
        x, = inputs
        return functions.softplus(x, beta=self.beta), 
開發者ID:chainer,項目名稱:chainer,代碼行數:5,代碼來源:test_softplus.py

示例8: _encode

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def _encode(self, xs):
        exs = self.embed_mat(xs)
        h = F.tanh(self.l1(exs))
        logits = F.softplus(self.l2(h))
        logits = F.log(logits + 1e-10).reshape(-1, self.M, self.K)
        return logits, exs 
開發者ID:chainer,項目名稱:models,代碼行數:8,代碼來源:net.py

示例9: loss_func_dcgan_dis_real

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def loss_func_dcgan_dis_real(y_real):
    return F.sum(F.softplus(-y_real)) / np.prod(y_real.data.shape) 
開發者ID:Aixile,項目名稱:chainer-gan-experiments,代碼行數:4,代碼來源:loss_functions.py

示例10: loss_func_dcgan_dis_fake

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def loss_func_dcgan_dis_fake(y_fake):
    return F.sum(F.softplus(y_fake)) / np.prod(y_fake.data.shape) 
開發者ID:Aixile,項目名稱:chainer-gan-experiments,代碼行數:4,代碼來源:loss_functions.py

示例11: loss_sigmoid_cross_entropy_with_logits

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softplus [as 別名]
def loss_sigmoid_cross_entropy_with_logits(x, t):
    return F.average(x - x*t + F.softplus(-x))# / x.data.shape[0] 
開發者ID:Aixile,項目名稱:chainer-gan-experiments,代碼行數:4,代碼來源:loss_functions.py


注:本文中的chainer.functions.softplus方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。