當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.softmax_cross_entropy方法代碼示例

本文整理匯總了Python中chainer.functions.softmax_cross_entropy方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.softmax_cross_entropy方法的具體用法?Python functions.softmax_cross_entropy怎麽用?Python functions.softmax_cross_entropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.softmax_cross_entropy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward_one_step

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward_one_step(self, x_data, y_data, state, train=True, dropout_ratio=0.5):
        x = Variable(x_data, volatile=not train)
        t = Variable(y_data, volatile=not train)

        h0      = self.embed(x)
        h1_in   = self.l1_x(F.dropout(h0, ratio=dropout_ratio, train=train)) + self.l1_h(state['h1'])
        c1, h1  = F.lstm(state['c1'], h1_in)
        h2_in   = self.l2_x(F.dropout(h1, ratio=dropout_ratio, train=train)) + self.l2_h(state['h2'])
        c2, h2  = F.lstm(state['c2'], h2_in)
        y       = self.l3(F.dropout(h2, ratio=dropout_ratio, train=train))
        state   = {'c1': c1, 'h1': h1, 'c2': c2, 'h2': h2}

        if train:
            return state, F.softmax_cross_entropy(y, t)
        else:
            return state, F.softmax(y) 
開發者ID:yusuketomoto,項目名稱:chainer-char-rnn,代碼行數:18,代碼來源:CharRNN.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.relu(self.fc4(h))
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_rcis.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例4: _get_loss_gen

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def _get_loss_gen(self):
        batchsize = self.y_fake.data.shape[0]
        L_mce = F.softmax_cross_entropy(self.pred_label_map, self.ground_truth, normalize=False)
        L_bce = F.softmax_cross_entropy(self.y_fake, Variable(self.xp.ones(batchsize, dtype=self.xp.int32), volatile=not self.gen.train))
        loss = L_mce + self.L_bce_weight * L_bce

        # log report
        label_true = chainer.cuda.to_cpu(self.ground_truth.data)
        label_pred = chainer.cuda.to_cpu(self.pred_label_map.data).argmax(axis=1)
        logs = []
        for i in six.moves.range(batchsize):
            acc, acc_cls, iu, fwavacc = utils.label_accuracy_score(
                label_true[i], label_pred[i], self.n_class)
            logs.append((acc, acc_cls, iu, fwavacc))
        log = np.array(logs).mean(axis=0)
        values = {
            'loss': loss,
            'accuracy': log[0],
            'accuracy_cls': log[1],
            'iu': log[2],
            'fwavacc': log[3],
        }
        chainer.report(values, self.gen)

        return loss 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:27,代碼來源:updater.py

示例5: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def calc_loss(self):
        batchsize = self.ground_truth.shape[0]
        self.loss = F.softmax_cross_entropy(self.pred_label_map, self.ground_truth, normalize=False)

        # log report
        label_true = chainer.cuda.to_cpu(self.ground_truth.data)
        label_pred = chainer.cuda.to_cpu(self.pred_label_map.data).argmax(axis=1)
        logs = []
        for i in six.moves.range(batchsize):
            acc, acc_cls, iu, fwavacc = utils.label_accuracy_score(
                label_true[i], label_pred[i], self.n_class)
            logs.append((acc, acc_cls, iu, fwavacc))
        log = np.array(logs).mean(axis=0)
        values = {
            'loss': self.loss,
            'accuracy': log[0],
            'accuracy_cls': log[1],
            'iu': log[2],
            'fwavacc': log[3],
        }
        chainer.report(values, self.model) 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:23,代碼來源:updater.py

示例6: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, x, t):
        # def forward(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        loss = F.softmax_cross_entropy(h, t)
        #loss = h

        # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        return loss

# from https://github.com/chainer/chainer/blob/master/examples/imagenet/alex.py 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:Alex_with_loss.py

示例7: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, x, t):
        # def forward(self, x):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        loss = F.softmax_cross_entropy(h, t)
        #loss = h

        # chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:Alex.py

示例8: softmax_cross_entropy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def softmax_cross_entropy(self, y, t):
        import numpy as np

        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # self.batch_size = chainer.Variable(np.array(t.size, np.float32),
        #                                    name='batch_size')
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        batch_size = chainer.Variable(np.array(t.shape[0], np.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        loss = -log_prob / batch_size
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:23,代碼來源:nin.py

示例9: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, x, t):
        h = self.bn1(self.conv1(x))
        h = F.max_pooling_2d(F.relu(h), 3, stride=2)
        h = self.res2(h)
        h = self.res3(h)
        h = self.res4(h)
        h = self.res5(h)
        h = F.average_pooling_2d(h, 7, stride=1)
        h = self.fc(h)

        #loss = F.softmax_cross_entropy(h, t)
        loss = self.softmax_cross_entropy(h, t)
        if self.compute_accuracy:
            chainer.report({'loss': loss, 'accuracy': F.accuracy(h, np.argmax(t, axis=1))}, self)
        else:
            chainer.report({'loss': loss}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:19,代碼來源:resnet50.py

示例10: softmax_cross_entropy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def softmax_cross_entropy(self, y, t):
        import numpy as np

        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # self.batch_size = chainer.Variable(np.array(t.size, np.float32),
        #                                    name='batch_size')
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        batch_size = chainer.Variable(self.xp.array(t.shape[0], np.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        loss = -log_prob / batch_size
        loss.name = 'loss'
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:23,代碼來源:resnet50.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, x, t):
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.local_response_normalization(
            F.relu(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)))
        h = F.dropout(F.relu(self.fc7(h)))
        h = self.fc8(h)

        # EDIT(hamaji): ONNX-chainer cannot output SoftmaxCrossEntropy.
        # loss = F.softmax_cross_entropy(h, t)
        loss = self.softmax_cross_entropy(h, t)
        if self.compute_accuracy:
            chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
        else:
            chainer.report({'loss': loss}, self)
        return loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:alex.py

示例12: loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def loss(self,es,x,y,t):
        """ Forward propagation and loss calculation
            Args:
                es (pair of ~chainer.Variable): encoder state 
                x (list of ~chainer.Variable): list of input sequences
                y (list of ~chainer.Variable): list of output sequences
                t (list of ~chainer.Variable): list of target sequences
                                   if t is None, it returns only states
            Return:
                es (pair of ~chainer.Variable(s)): encoder state
                ds (pair of ~chainer.Variable(s)): decoder state
                loss (~chainer.Variable) : cross-entropy loss
        """
        es,ey = self.encoder(es,x)
        ds,dy = self.decoder(es,y)
        if t is not None:
            loss = F.softmax_cross_entropy(dy,t)
            # avoid NaN gradients (See: https://github.com/pfnet/chainer/issues/2505)
            if chainer.config.train:
                loss += F.sum(F.concat(ey, axis=0)) * 0
            return es, ds, loss
        else: # if target is None, it only returns states
            return es, ds 
開發者ID:dialogtekgeek,項目名稱:DSTC6-End-to-End-Conversation-Modeling,代碼行數:25,代碼來源:seq2seq_model.py

示例13: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(net, image_batch, sentence_batch, train=True):
    images = xp.asarray(image_batch)
    n, sentence_length = sentence_batch.shape
    net.initialize(images)
    loss = 0
    acc = 0
    size = 0
    for i in range(sentence_length - 1):
        target = xp.where(xp.asarray(sentence_batch[:, i]) != eos, 1, 0).astype(np.float32)
        if (target == 0).all():
            break
        with chainer.using_config('train', train):
            with chainer.using_config('enable_backprop', train):
                x = xp.asarray(sentence_batch[:, i])
                t = xp.asarray(sentence_batch[:, i + 1])
                y = net(x)
                y_max_index = xp.argmax(y.data, axis=1)
                mask = target.reshape((len(target), 1)).repeat(y.data.shape[1], axis=1)
                y = y * mask
                loss += F.softmax_cross_entropy(y, t)
                acc += xp.sum((y_max_index == t) * target)
                size += xp.sum(target)
    return loss / size, float(acc) / size, float(size) 
開發者ID:dsanno,項目名稱:chainer-image-caption,代碼行數:25,代碼來源:train.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, img_feats, captions):
        """Batch of image features and image captions to a singe loss.

        Compute the softmax cross-entropy captioning loss in a single pass
        without iterating over the sequences.
        """
        hx, cx, _ = self.reset(img_feats)

        # Extract all inputs and targets for all captions in the batch
        xs = [c[:-1] for c in captions]  # del eos
        ts = [c[1:] for c in captions]  # del bos

        # Get the predictions `ys`
        _, _, ys = self.step(hx, cx, xs)

        # Since `ys` is concatenated, we also concatenate the target tokens
        # before computing the loss
        ts = F.concat(ts, axis=0)

        loss = F.softmax_cross_entropy(ys, ts)
        return loss 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:model.py

示例15: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax_cross_entropy [as 別名]
def forward(self, inputs, device):
        x, = inputs
        t = device.send(self.t)
        class_weight = device.send(self.class_weight)
        loss = functions.softmax_cross_entropy(
            x, t, normalize=self.normalize, reduce=self.reduce,
            cache_score=self.cache_score, class_weight=class_weight,
            enable_double_backprop=self.enable_double_backprop)

        if not (self.enable_double_backprop or device.xp is chainerx):
            assert (loss.creator.y is not None) == self.cache_score

        # All the loss values except those corresponding to the ignored label
        # must be positive.
        # TODO(niboshi): Use device.xp.where once chainerx supports it.
        assert numpy.where(
            backend.CpuDevice().send(t == -1),
            True,
            backend.CpuDevice().send(loss.array) > 0).all()

        return loss, 
開發者ID:chainer,項目名稱:chainer,代碼行數:23,代碼來源:test_softmax_cross_entropy.py


注:本文中的chainer.functions.softmax_cross_entropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。