當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.softmax方法代碼示例

本文整理匯總了Python中chainer.functions.softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.softmax方法的具體用法?Python functions.softmax怎麽用?Python functions.softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.softmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mellowmax

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def mellowmax(values, omega=1., axis=1):
    """Mellowmax function.

    This is a kind of softmax function that is, unlike the Boltzmann softmax,
    non-expansion.

    See: http://arxiv.org/abs/1612.05628

    Args:
        values (Variable or ndarray):
            Input values. Mellowmax is taken along the second axis.
        omega (float):
            Parameter of mellowmax.
        axis (int):
            Axis along which mellowmax is taken.
    Returns:
        outputs (Variable)
    """
    n = values.shape[axis]
    return (F.logsumexp(omega * values, axis=axis) - np.log(n)) / omega 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:22,代碼來源:mellowmax.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]

        h = self.activation(self.main_stream(h))
        h_a, h_v = F.split_axis(h, 2, axis=-1)
        ya = F.reshape(self.a_stream(h_a),
                       (batch_size, self.n_actions, self.n_atoms))

        mean = F.sum(ya, axis=1, keepdims=True) / self.n_actions

        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = F.reshape(self.v_stream(h_v), (batch_size, 1, self.n_atoms))
        ya, ys = F.broadcast(ya, ys)
        q = F.softmax(ya + ys, axis=2)

        return action_value.DistributionalDiscreteActionValue(q, self.z_values) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:26,代碼來源:dueling_dqn.py

示例3: forward_one_step

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def forward_one_step(self, x_data, y_data, state, train=True, dropout_ratio=0.5):
        x = Variable(x_data, volatile=not train)
        t = Variable(y_data, volatile=not train)

        h0      = self.embed(x)
        h1_in   = self.l1_x(F.dropout(h0, ratio=dropout_ratio, train=train)) + self.l1_h(state['h1'])
        c1, h1  = F.lstm(state['c1'], h1_in)
        h2_in   = self.l2_x(F.dropout(h1, ratio=dropout_ratio, train=train)) + self.l2_h(state['h2'])
        c2, h2  = F.lstm(state['c2'], h2_in)
        y       = self.l3(F.dropout(h2, ratio=dropout_ratio, train=train))
        state   = {'c1': c1, 'h1': h1, 'c2': c2, 'h2': h2}

        if train:
            return state, F.softmax_cross_entropy(y, t)
        else:
            return state, F.softmax(y) 
開發者ID:yusuketomoto,項目名稱:chainer-char-rnn,代碼行數:18,代碼來源:CharRNN.py

示例4: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.relu(self.fc4(h))
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_rcis.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例6: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def forward(self, batch):
        label_onehot_batch = [self._onehot_encode(pair[1]) for pair in batch]

        input_img, ground_truth = self.converter(batch, self.device)
        ground_truth_onehot = self.converter(label_onehot_batch, self.device)
        input_img = Variable(input_img, volatile=not self.gen.train)
        ground_truth = Variable(ground_truth, volatile=not self.gen.train)
        ground_truth_onehot = Variable(ground_truth_onehot, volatile=not self.gen.train)
        
        x_real = self._make_dis_input(input_img, ground_truth_onehot)
        y_real = self.dis(x_real)

        pred_label_map = self.gen(input_img)
        x_fake = self._make_dis_input(input_img, F.softmax(pred_label_map))
        y_fake = self.dis(x_fake)

        self.y_fake = y_fake
        self.y_real = y_real
        self.pred_label_map = pred_label_map
        self.ground_truth = ground_truth 
開發者ID:oyam,項目名稱:Semantic-Segmentation-using-Adversarial-Networks,代碼行數:22,代碼來源:updater.py

示例7: generate

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def generate(net, image_model, image_path):
    feature = image_model.feature(image_path)
    net.initialize(feature)
    candidates = [(net, [bos], 0)]

    for i in range(max_length):
        next_candidates = []
        for prev_net, tokens, likelihood in candidates:
            if tokens[-1] == eos:
                next_candidates.append((None, tokens, likelihood))
                continue
            net = prev_net.copy()
            x = xp.asarray([tokens[-1]]).astype(np.int32)
            y = F.softmax(net(x))
            token_likelihood = np.log(cuda.to_cpu(y.data[0]))
            order = token_likelihood.argsort()[-beam_width:][::-1]
            next_candidates.extend([(net, tokens + [i], likelihood + token_likelihood[i]) for i in order])
        candidates = sorted(next_candidates, key=lambda x: -x[2])[:beam_width]
        if all([candidate[1][-1] == eos for candidate in candidates]):
            break
    return [candidate[1] for candidate in candidates] 
開發者ID:dsanno,項目名稱:chainer-image-caption,代碼行數:23,代碼來源:generate_caption.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __call__(self, x):
        y = self.branches(x)

        u = F.sum(y, axis=1)
        s = F.average_pooling_2d(u, ksize=u.shape[2:])
        z = self.fc1(s)
        w = self.fc2(z)

        batch = w.shape[0]
        w = F.reshape(w, shape=(batch, self.num_branches, self.out_channels))
        w = self.softmax(w)
        w = F.expand_dims(F.expand_dims(w, axis=3), axis=4)

        y = y * w
        y = F.sum(y, axis=1)
        return y 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:18,代碼來源:sknet.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __call__(self, doc_ids, update_only_docs=False):
        """ Given an array of document integer indices, returns a vector
        for each document. The vector is composed of topic weights projected
        onto topic vectors.

        Args:
            doc_ids : chainer.Variable
                One-dimensional batch vectors of IDs

        Returns:
            doc_vector : chainer.Variable
                Batch of two-dimensional embeddings for every document.
        """
        # (batchsize, ) --> (batchsize, multinomial)
        proportions = self.proportions(doc_ids, softmax=True)
        # (batchsize, n_factors) * (n_factors, n_dim) --> (batchsize, n_dim)
        factors = F.dropout(self.factors(), ratio=self.dropout_ratio)
        if update_only_docs:
            factors.unchain_backward()
        w_sum = F.matmul(proportions, factors)
        return w_sum 
開發者ID:cemoody,項目名稱:lda2vec,代碼行數:23,代碼來源:embed_mixture.py

示例10: proportions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def proportions(self, doc_ids, softmax=False):
        """ Given an array of document indices, return a vector
        for each document of just the unnormalized topic weights.

        Returns:
            doc_weights : chainer.Variable
                Two dimensional topic weights of each document.
        """
        w = self.weights(doc_ids)
        if softmax:
            size = w.data.shape
            mask = self.xp.random.random_integers(0, 1, size=size)
            y = (F.softmax(w * self.temperature) *
                 Variable(mask.astype('float32')))
            norm, y = F.broadcast(F.expand_dims(F.sum(y, axis=1), 1), y)
            return y / (norm + 1e-7)
        else:
            return w 
開發者ID:cemoody,項目名稱:lda2vec,代碼行數:20,代碼來源:embed_mixture.py

示例11: attend

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def attend(self, query, key, value, mask, minfs=None):
        """
        Input shapes:
            q=(b, units, dec_l), k=(b, units, enc_l),
            v=(b, units, dec_l, enc_l), m=(b, dec_l, enc_l)
        """

        # Calculate Attention Scores with Mask for Zero-padded Areas
        pre_a = F.batch_matmul(query, key, transa=True)  # (b, dec_l, enc_l)
        minfs = self.xp.full(pre_a.shape, -np.inf, pre_a.dtype) \
            if minfs is None else minfs
        pre_a = F.where(mask, pre_a, minfs)
        a = F.softmax(pre_a, axis=2)
        # if values in axis=2 are all -inf, they become nan. thus do re-mask.
        a = F.where(self.xp.isnan(a.data),
                    self.xp.zeros(a.shape, dtype=a.dtype), a)
        reshaped_a = a[:, None]  # (b, 1, dec_xl, enc_l)

        # Calculate Weighted Sum
        pre_c = F.broadcast_to(reshaped_a, value.shape) * value
        c = F.sum(pre_c, axis=3, keepdims=True)  # (b, units, dec_xl, 1)
        return c 
開發者ID:soskek,項目名稱:convolutional_seq2seq,代碼行數:24,代碼來源:net.py

示例12: decode_predictions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def decode_predictions(self, predictions):
        # concat all individual predictions and slice for each time step
        predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)

        words = []
        with cuda.get_device_from_array(predictions.data):
            for prediction in F.separate(predictions, axis=0):
                prediction = F.squeeze(prediction, axis=0)
                prediction = F.softmax(prediction, axis=1)
                prediction = self.xp.argmax(prediction.data, axis=1)
                word = self.loss_metrics.strip_prediction(prediction[self.xp.newaxis, ...])[0]
                if len(word) == 1 and word[0] == 0:
                    return ''

                word = "".join(map(self.loss_metrics.label_to_char, word))
                word = word.replace(chr(self.loss_metrics.char_map[str(self.loss_metrics.blank_symbol)]), '')
                words.append(word)

        text = " ".join(words)
        return text 
開發者ID:Bartzi,項目名稱:see,代碼行數:22,代碼來源:svhn_bbox_plotter.py

示例13: get_gaussian_params

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def get_gaussian_params(self, x):
        h = F.tanh(self.l1(x))
        h = self.l2(h)

        pi = h[:, :self.gaussian_mixtures]
        mu_var_dim = self.gaussian_mixtures * self.input_dim
        mu = h[:, self.gaussian_mixtures:self.gaussian_mixtures + mu_var_dim]
        log_var = h[:, self.gaussian_mixtures + mu_var_dim:]

        n_batch = x.shape[0]

        # mixing coefficients
        pi = F.reshape(pi, (n_batch, self.gaussian_mixtures))
        pi = F.softmax(pi, axis=1)

        # mean
        mu = F.reshape(mu, (n_batch, self.gaussian_mixtures, self.input_dim))

        # log variance
        log_var = F.reshape(
            log_var, (n_batch, self.gaussian_mixtures, self.input_dim))

        return pi, mu, log_var 
開發者ID:chainer,項目名稱:models,代碼行數:25,代碼來源:mdn.py

示例14: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def __init__(self, ndim_obs, n_actions, n_atoms, v_min, v_max,
                 n_hidden_channels, n_hidden_layers,
                 nonlinearity=F.relu, last_wscale=1.0):
        assert n_atoms >= 2
        assert v_min < v_max
        z_values = np.linspace(v_min, v_max, num=n_atoms, dtype=np.float32)
        model = chainerrl.links.Sequence(
            MLP(in_size=ndim_obs, out_size=n_actions * n_atoms,
                hidden_sizes=[n_hidden_channels] * n_hidden_layers,
                nonlinearity=nonlinearity,
                last_wscale=last_wscale),
            lambda x: F.reshape(x, (-1, n_actions, n_atoms)),
            lambda x: F.softmax(x, axis=2),
        )
        super().__init__(model=model, z_values=z_values) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:17,代碼來源:state_q_functions.py

示例15: select_action

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import softmax [as 別名]
def select_action(self, t, greedy_action_func, action_value=None):
        assert action_value is not None
        assert isinstance(action_value,
                          chainerrl.action_value.DiscreteActionValue)
        n_actions = action_value.q_values.shape[1]
        with chainer.no_backprop_mode():
            probs = chainer.cuda.to_cpu(
                F.softmax(action_value.q_values / self.T).array).ravel()
        return np.random.choice(np.arange(n_actions), p=probs) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:11,代碼來源:boltzmann.py


注:本文中的chainer.functions.softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。