當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.sigmoid_cross_entropy方法代碼示例

本文整理匯總了Python中chainer.functions.sigmoid_cross_entropy方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.sigmoid_cross_entropy方法的具體用法?Python functions.sigmoid_cross_entropy怎麽用?Python functions.sigmoid_cross_entropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.sigmoid_cross_entropy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_forward_no_reduction

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def check_forward_no_reduction(self, x_data, t_data):
        x_val = chainer.Variable(x_data)
        t_val = chainer.Variable(t_data)
        loss = functions.sigmoid_cross_entropy(
            x_val, t_val, self.normalize, reduce='no')
        self.assertEqual(loss.data.shape, self.x.shape)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        # Compute expected value
        if not getattr(self, 'ignore_all', False):
            for i in six.moves.range(self.x.shape[0]):
                for j in six.moves.range(self.x.shape[1]):
                    xd, td = self.x[i, j], self.t[i, j]
                    if td == -1:
                        loss_expect = 0
                    else:
                        loss_expect = -(
                            xd * (td - (xd >= 0)) -
                            math.log(1 + math.exp(-numpy.abs(xd))))
                    self.assertAlmostEqual(
                        loss_expect, loss_value[i, j], places=self.places) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_sigmoid_cross_entropy.py

示例2: check_double_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def check_double_backward(self, x_data, t_data, y_grad, gx_grad,
                              normalize=True, reduce='mean'):
        # Skip too large case. That requires a long time.
        if self.shape[0] == 65536:
            return

        if reduce == 'mean':
            y_grad = utils.force_array(y_grad.sum())

        def f(x, t):
            return chainer.functions.sigmoid_cross_entropy(
                x, t, normalize=normalize, reduce=reduce)

        gradient_check.check_double_backward(
            f, (x_data, t_data), y_grad, (gx_grad,),
            **self.check_double_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_sigmoid_cross_entropy.py

示例3: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def __call__(self, x, labels):
        x = BatchTransform(self.model.mean)(x)
        x = self.xp.array(x)
        scores = self.model(x)

        B, n_class = scores.shape[:2]
        one_hot_labels = self.xp.zeros((B, n_class), dtype=np.int32)
        for i, label in enumerate(labels):
            one_hot_labels[i, label] = 1
        # sigmoid_cross_entropy normalizes the loss
        # by the size of batch and the number of classes.
        # It works better to remove the normalization factor
        # of the number of classes.
        loss = self.loss_scale * F.sigmoid_cross_entropy(
            scores, one_hot_labels)

        result = calc_accuracy(scores, labels)
        reporter.report({'loss': loss}, self)
        reporter.report({'accuracy': result['accuracy']}, self)
        reporter.report({'n_pred': result['n_pred']}, self)
        reporter.report({'n_pos': result['n_pos']}, self)
        return loss 
開發者ID:chainer,項目名稱:models,代碼行數:24,代碼來源:multi_label_classifier.py

示例4: update_core

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def update_core(self):

		image, labels = self.converter(self.get_iterator('main').next())
		assert image.shape[0] == 1, "Batchsize of only 1 is allowed for now"
		image = Variable(image)

		if self.device >= 0:
			image.to_gpu(self.device)
		cl_output = self._optimizers['main'].target.classify(image)
		xp = get_array_module(cl_output.data)

		target = xp.asarray([[0]*(self.no_of_classes)]*cl_output.shape[0])
		for i in range(labels.shape[0]):
			gt_labels = np.unique(labels[i]).astype(np.int32)[2:] - 1 # Not considering -1 & 0
			target[i][gt_labels] = 1
		loss = F.sigmoid_cross_entropy(cl_output, target, normalize=True)
		report({'Loss':loss}, self.get_optimizer('main').target)
		self._optimizers['main'].target.cleargrads()
		loss.backward()
		self._optimizers['main'].update() 
開發者ID:alokwhitewolf,項目名稱:Guided-Attention-Inference-Network,代碼行數:22,代碼來源:updater.py

示例5: update_core

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def update_core(self):
        batch = self._iterators['main'].next()

        x = chainer.cuda.to_gpu(np.array([i[0] for i in batch]))
        labels = [l[1] for l in batch] 
        row_idx, col_idx, val_idx = [], [], []
        for i in range(len(labels)):
            l_list = list(set(labels[i]))
            for y in l_list:
                row_idx.append(i)
                col_idx.append(y)
                val_idx.append(1)
        m = len(labels)
        n = self.class_dim
        t = sp.csr_matrix((val_idx, (row_idx, col_idx)), shape=(m, n), dtype=np.int8).todense()
        

        t = chainer.cuda.to_gpu(t)

        optimizer = self._optimizers['main']
        optimizer.target.cleargrads()
        loss = F.sigmoid_cross_entropy(optimizer.target(x), t)
        chainer.reporter.report({'main/loss':loss})
        loss.backward()
        optimizer.update() 
開發者ID:ShimShim46,項目名稱:HFT-CNN,代碼行數:27,代碼來源:MyUpdater.py

示例6: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        self.pred = F.reshape(h, (x.data.shape[0], 16, 16))

        if t is not None:
            self.loss = F.sigmoid_cross_entropy(self.pred, t, normalize=False)
            return self.loss
        else:
            self.pred = F.sigmoid(self.pred)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:16,代碼來源:MnihCNN_single.py

示例7: mask_head_loss_post

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def mask_head_loss_post(segms, mask_roi_indices, gt_segms, gt_mask_labels,
                        batchsize):
    """Loss function for Mask Head (post).

     Args:
         segms (array): An array whose shape is :math:`(R, n\_class, M, M)`,
             where :math:`R` is the total number of RoIs in the given batch.
         mask_roi_indices (array): A list of arrays returned by
             :func:`mask_head_loss_pre`.
         gt_segms (list of arrays): A list of arrays returned by
             :func:`mask_head_loss_pre`.
         gt_mask_labels (list of arrays): A list of arrays returned by
             :func:`mask_head_loss_pre`.
         batchsize (int): The size of batch.

     Returns:
        chainer.Variable:
        Mask loss.
    """
    xp = cuda.get_array_module(segms.array)

    mask_roi_indices = xp.hstack(mask_roi_indices).astype(np.int32)
    gt_segms = xp.vstack(gt_segms)
    gt_mask_labels = xp.hstack(gt_mask_labels).astype(np.int32)

    mask_loss = F.sigmoid_cross_entropy(
        segms[np.arange(len(gt_mask_labels)), gt_mask_labels],
        gt_segms.astype(np.int32))
    return mask_loss 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:31,代碼來源:mask_head.py

示例8: pit_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def pit_loss(pred, label, label_delay=0):
    """
    Permutation-invariant training (PIT) cross entropy loss function.

    Args:
      pred:  (T,C)-shaped pre-activation values
      label: (T,C)-shaped labels in {0,1}
      label_delay: if label_delay == 5:
           pred: 0 1 2 3 4 | 5 6 ... 99 100 |
          label: x x x x x | 0 1 ... 94  95 | 96 97 98 99 100
          calculated area: | <------------> |

    Returns:
      min_loss: (1,)-shape mean cross entropy
      label_perms[min_index]: permutated labels
    """
    # label permutations along the speaker axis
    label_perms = [label[..., list(p)] for p
                   in permutations(range(label.shape[-1]))]
    losses = F.stack(
        [F.sigmoid_cross_entropy(
            pred[label_delay:, ...],
            l[:len(l) - label_delay, ...]) for l in label_perms])
    xp = cuda.get_array_module(losses)
    min_loss = F.min(losses) * (len(label) - label_delay)
    min_index = cuda.to_cpu(xp.argmin(losses.data))

    return min_loss, label_perms[min_index] 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:30,代碼來源:models.py

示例9: check_forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def check_forward(self, x_data, t_data, use_cudnn='always'):
        x_val = chainer.Variable(x_data)
        t_val = chainer.Variable(t_data)
        with chainer.using_config('use_cudnn', use_cudnn):
            loss = functions.sigmoid_cross_entropy(x_val, t_val,
                                                   self.normalize)
        self.assertEqual(loss.data.shape, ())
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = float(cuda.to_cpu(loss.data))

        # Compute expected value
        loss_expect = 0
        non_ignore_count = 0
        for i in six.moves.range(self.x.shape[0]):
            for j in six.moves.range(self.x.shape[1]):
                xd, td = self.x[i, j], self.t[i, j]
                if td == -1:
                    continue
                loss_expect -= xd * (td - (xd >= 0)) \
                    - math.log(1 + math.exp(-numpy.abs(xd)))
                non_ignore_count += 1
        if non_ignore_count == 0:
            loss_expect = 0
        elif self.normalize:
            loss_expect /= non_ignore_count
        else:
            loss_expect /= self.t.shape[0]
        self.assertAlmostEqual(loss_expect, loss_value, places=self.places) 
開發者ID:chainer,項目名稱:chainer,代碼行數:30,代碼來源:test_sigmoid_cross_entropy.py

示例10: check_backward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def check_backward(self, x_data, t_data):
        # Skip too large case. That requires a long time.
        if self.shape[0] == 65536:
            return

        gradient_check.check_backward(
            functions.sigmoid_cross_entropy,
            (x_data, t_data), None, **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:10,代碼來源:test_sigmoid_cross_entropy.py

示例11: check_backward_no_reduction

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def check_backward_no_reduction(
            self, x_data, t_data, y_grad):
        # Skip too large case. That requires a long time.
        if self.shape[0] == 65536:
            return

        def f(x, t):
            return chainer.functions.sigmoid_cross_entropy(x, t, reduce='no')

        gradient_check.check_backward(
            f, (x_data, t_data), y_grad, **self.check_backward_options) 
開發者ID:chainer,項目名稱:chainer,代碼行數:13,代碼來源:test_sigmoid_cross_entropy.py

示例12: forward_chainerx

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def forward_chainerx(self, inputs):
        x, = inputs
        # TODO(aksub99): Improve implementation to avoid non-differentiability
        # wrt targets
        t = self.backend_config.get_array(self.t)
        out = chainerx.sigmoid_cross_entropy(x, t)
        return out, 
開發者ID:chainer,項目名稱:chainer,代碼行數:9,代碼來源:test_loss.py

示例13: forward_chainer

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def forward_chainer(self, inputs):
        x, = inputs
        t = self.t
        out = F.sigmoid_cross_entropy(x, t, normalize=False, reduce='no')
        return out, 
開發者ID:chainer,項目名稱:chainer,代碼行數:7,代碼來源:test_loss.py

示例14: update_core

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def update_core(self):
        xp = self.fsgen.xp
        fsgen_optimizer = self.get_optimizer('fsgen')
        vgen_optimizer = self.get_optimizer('vgen')
        vdis_optimizer = self.get_optimizer('vdis')
        real_video, fake_video, dis_fake, dis_real = self.forward()
        batchsize = real_video.shape[0]
        
        loss_dis_fake = F.sigmoid_cross_entropy(
            dis_fake, xp.ones((batchsize, 1, 1, 1), dtype="i"))
        loss_dis_real = F.sigmoid_cross_entropy(
            dis_real, xp.zeros((batchsize, 1, 1, 1), dtype="i"))
        loss_gen = F.sigmoid_cross_entropy(
            dis_fake, xp.zeros((batchsize, 1, 1, 1), dtype="i"))
        
        chainer.report({'loss_dis_fake': loss_dis_fake}, self.vdis)
        chainer.report({'loss_dis_real': loss_dis_real}, self.vdis)

        fsgen_optimizer.target.zerograds()
        vgen_optimizer.target.zerograds()
        loss_gen.backward()
        fsgen_optimizer.update()
        vgen_optimizer.update()
        fake_video.unchain_backward()

        vdis_optimizer.target.zerograds()
        (loss_dis_fake + loss_dis_real).backward()
        vdis_optimizer.update() 
開發者ID:pfnet-research,項目名稱:tgan,代碼行數:30,代碼來源:tgan_updater_vanilla.py

示例15: evaluate

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid_cross_entropy [as 別名]
def evaluate(self):

        iterator = self._iterators['main']
        eval_func = self.eval_func or self._targets['main']

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        summary = reporter_module.DictSummary()

        for batch in it:
            observation = {}
            with reporter_module.report_scope(observation):
                row_idx, col_idx, val_idx = [], [], []
                x = cuda.to_gpu(np.array([i[0] for i in batch]))
                labels = [l[1] for l in batch]
                for i in range(len(labels)):
                    l_list = list(set(labels[i]))
                    for y in l_list:
                        row_idx.append(i)
                        col_idx.append(y)
                        val_idx.append(1)
                m = len(labels)
                n = self.class_dim
                t = sp.csr_matrix((val_idx, (row_idx, col_idx)), shape=(m, n), dtype=np.int8).todense()
                t = cuda.to_gpu(t)

                with function.no_backprop_mode():
                    loss = F.sigmoid_cross_entropy(eval_func(x), t)
                    summary.add({MyEvaluator.default_name + '/main/loss':loss})
            summary.add(observation)

        return summary.compute_mean() 
開發者ID:ShimShim46,項目名稱:HFT-CNN,代碼行數:41,代碼來源:MyEvaluator.py


注:本文中的chainer.functions.sigmoid_cross_entropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。