當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.sigmoid方法代碼示例

本文整理匯總了Python中chainer.functions.sigmoid方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.sigmoid方法的具體用法?Python functions.sigmoid怎麽用?Python functions.sigmoid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.sigmoid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __call__(self, prev_hg, prev_he, prev_ce, x, v, r, u):
        xu = cf.concat((x, u), axis=1)
        xu = self.downsample_xu(xu)
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_he, prev_hg, xu, v, r), axis=1)
        gate_inputs = self.lstm(lstm_input)

        if self.use_cuda_kernel:
            next_h, next_c = CoreFunction()(gate_inputs, prev_ce)
        else:
            forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
                gate_inputs, 4, axis=1)

            forget_gate = cf.sigmoid(forget_gate_input)
            input_gate = cf.sigmoid(input_gate_input)
            next_c = forget_gate * prev_ce + input_gate * cf.tanh(tanh_input)
            output_gate = cf.sigmoid(output_gate_input)
            next_h = output_gate * cf.tanh(next_c)

        return next_h, next_c 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:25,代碼來源:inference.py

示例2: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __call__(self, prev_hg, prev_cg, prev_z, v, r, prev_u):
        v = self.broadcast_v(v)
        if r.shape[2] == 1:
            r = self.broadcast_r(r)

        lstm_input = cf.concat((prev_hg, v, r, prev_z), axis=1)
        gate_inputs = self.lstm(lstm_input)

        forget_gate_input, input_gate_input, tanh_input, output_gate_input = cf.split_axis(
            gate_inputs, 4, axis=1)

        forget_gate = cf.sigmoid(forget_gate_input)
        input_gate = cf.sigmoid(input_gate_input)
        next_c = forget_gate * prev_cg + input_gate * cf.tanh(tanh_input)
        output_gate = cf.sigmoid(output_gate_input)
        next_h = output_gate * cf.tanh(next_c)

        next_u = self.upsample_h(next_h) + prev_u

        return next_h, next_c, next_u 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:22,代碼來源:generator.py

示例3: faster_call2

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def faster_call2(self, h, x):
        r_z_h_x = self.W_r_z_h(x)

        r_z_h = self.U_r_z(h)

        r_x, z_x, h_x = split_axis(r_z_h_x, (self.n_units, self.n_units * 2), axis=1)
        assert r_x.data.shape[1] == self.n_units
        assert z_x.data.shape[1] == self.n_units
        assert h_x.data.shape[1] == self.n_units

        r_h, z_h = split_axis(r_z_h, (self.n_units,), axis=1)
#         r = sigmoid.sigmoid(r_x + r_h)
#         z = sigmoid.sigmoid(z_x + z_h)
#         h_bar = tanh.tanh(h_x + self.U(sigm_a_plus_b_by_h(r_x, r_h, h)))
#         h_new = (1 - z) * h + z * h_bar
#         return h_new

        return compute_output_GRU(z_x, z_h, h_x, h, self.U(sigm_a_plus_b_by_h_fast(r_x, r_h, h))) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:20,代碼來源:faster_gru.py

示例4: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __init__(self,
                 channels,
                 reduction=16,
                 round_mid=False,
                 mid_activation=(lambda: F.relu),
                 out_activation=(lambda: F.sigmoid)):
        super(SEBlock, self).__init__()
        self.use_conv2 = (reduction > 1)
        mid_channels = channels // reduction if not round_mid else round_channels(float(channels) / reduction)

        with self.init_scope():
            self.fc1 = L.Linear(
                in_size=channels,
                out_size=mid_channels)
            if self.use_conv2:
                self.activ = get_activation_layer(mid_activation)
                self.fc2 = L.Linear(
                    in_size=mid_channels,
                    out_size=channels)
            self.sigmoid = get_activation_layer(out_activation) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:22,代碼來源:sinet.py

示例5: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 do_nms,
                 **kwargs):
        super(CenterNetHeatmapBlock, self).__init__(**kwargs)
        self.do_nms = do_nms

        with self.init_scope():
            self.head = CenterNetHeadBlock(
                in_channels=in_channels,
                out_channels=out_channels)
            self.sigmoid = F.sigmoid
            if self.do_nms:
                self.pool = partial(
                    F.max_pooling_2d,
                    ksize=3,
                    stride=1,
                    pad=1,
                    cover_all=False) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:22,代碼來源:centernet.py

示例6: get_loss_func

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def get_loss_func(self, C=1.0, k=1):
        """Get loss function of VAE.

        The loss value is equal to ELBO (Evidence Lower Bound)
        multiplied by -1.

        Args:
            C (int): Usually this is 1.0. Can be changed to control the
                second term of ELBO bound, which works as regularization.
            k (int): Number of Monte Carlo samples used in encoded vector.
        """
        def lf(x):
            mu, ln_var = self.encode(x)
            batchsize = len(mu.data)
            # reconstruction loss
            rec_loss = 0
            for l in six.moves.range(k):
                z = F.gaussian(mu, ln_var)
                rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
                    / (k * batchsize)
            self.rec_loss = rec_loss
            self.loss = self.rec_loss + \
                C * gaussian_kl_divergence(mu, ln_var) / batchsize
            return self.loss
        return lf 
開發者ID:lanpa,項目名稱:tensorboardX,代碼行數:27,代碼來源:net.py

示例7: test_fake_as_funcnode_without_replace

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def test_fake_as_funcnode_without_replace():

    class Model(chainer.Chain):
        def _init__(self):
            super().__init__()

        def add(self, xs, value=0.01):
            return xs.array + value

        def __call__(self, xs):
            return F.sigmoid(self.add(xs))

    model = Model()
    x = input_generator.increasing(3, 4)

    onnx_model = export(model, x)
    sigmoid_nodes = [
        node for node in onnx_model.graph.node if node.op_type == 'Sigmoid']
    assert len(sigmoid_nodes) == 1
    # sigmoid node should be expected to connect with input
    # but the connection is cut because `add` method takes array.
    assert not sigmoid_nodes[0].input[0] == 'Input_0' 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:test_replace_func.py

示例8: region_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def region_loss(output, gt_points):
    # rpoints lie in [0, feat_size]
    # points lie in [0, 1]
    # anchors = [0.1067, 0.9223]
    B, C, H, W = output.shape

    det_confs = F.sigmoid(output[:, 18])
    rpoints = output[:, :18].reshape(B, 9, 2, H, W)
    rpoints0 = F.sigmoid(rpoints[:, 0])
    rpoints = F.concat(
        (rpoints0[:, None], rpoints[:, 1:]), axis=1)
    rpoints_data = rpoints.data

    points_data = rpoints_to_points(rpoints_data)
    gt_rpoints, gt_confs, coord_mask, conf_mask = create_target(
        points_data, gt_points)

    point_loss = F.sum(
        coord_mask[:, None, None] * (rpoints - gt_rpoints) ** 2) / (2 * B)
    conf_loss = F.sum(conf_mask * (det_confs - gt_confs) ** 2) / (2 * B)
    return point_loss, conf_loss 
開發者ID:chainer,項目名稱:models,代碼行數:23,代碼來源:region_loss.py

示例9: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __call__(self, imgs):
        with chainer.using_config('train', False), \
                chainer.function.no_backprop_mode():
            transform = BatchTransform(self.model.mean)
            imgs = transform(imgs)
            imgs = self.model.xp.array(imgs)
            scores = self.model(imgs)
            probs = chainer.cuda.to_cpu(F.sigmoid(scores).data)

        labels = []
        scores = []
        for prob in probs:
            label = np.where(prob >= self.thresh)[0]
            labels.append(label)
            scores.append(prob[label])
        return labels, scores 
開發者ID:chainer,項目名稱:models,代碼行數:18,代碼來源:eval_voc07.py

示例10: calc_accuracy

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def calc_accuracy(pred_scores, gt_labels):
    # https://arxiv.org/pdf/1612.03663.pdf
    # end of section 3.1
    pred_probs = F.sigmoid(pred_scores).data

    accs = []
    n_pos = []
    n_pred = []
    for pred_prob, gt_label in zip(pred_probs, gt_labels):
        gt_label = chainer.cuda.to_cpu(gt_label)
        pred_prob = chainer.cuda.to_cpu(pred_prob)
        pred_label = np.where(pred_prob > 0.5)[0]

        correct = np.intersect1d(gt_label, pred_label)
        diff_gt = np.setdiff1d(gt_label, correct)
        diff_pred = np.setdiff1d(pred_label, correct)
        accs.append(
            len(correct) / (len(correct) + len(diff_gt) + len(diff_pred)))
        n_pos.append(len(gt_label))
        n_pred.append(len(pred_label))
    return {
        'accuracy': np.mean(accs),
        'n_pos': np.mean(n_pos),
        'n_pred': np.mean(n_pred)} 
開發者ID:chainer,項目名稱:models,代碼行數:26,代碼來源:multi_label_classifier.py

示例11: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def forward(self, inputs):
        current_input = inputs
        for layer in self._layers:
            projected_input = layer(current_input)
            linear_part = current_input
            # NOTE: if you modify this, think about whether you should modify the initialization
            # above, too.
            nonlinear_part = projected_input[:,
                                             (0 * self._input_dim):
                                             (1 * self._input_dim)]
            gate = projected_input[:,
                                   (1 * self._input_dim):
                                   (2 * self._input_dim)]
            nonlinear_part = self._activation(nonlinear_part)
            gate = F.sigmoid(gate)
            current_input = gate * linear_part + (1 - gate) * nonlinear_part
        return current_input 
開發者ID:chainer,項目名稱:models,代碼行數:19,代碼來源:highway.py

示例12: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __init__(self, base=64):
        super(Generator, self).__init__(
                CLBlock  (1,      base*1, 128),
                CLBlock  (base*1, base*1, 128),
                CLBlock  (base*1, base*1, 128),
                CLBlock  (base*1, base*1, 128),
                CLBlock  (base*1, base*1, 128),
                CLBlock  (base*1, base*1, 128),
                ConvBlock(base*1, 1,       mode='none', activation=F.sigmoid, bn=False)
            ) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:12,代碼來源:models.py

示例13: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __init__(self, base=64):
        super(Generator, self).__init__(
                ConvBlock(1,       base*1,  mode='none'),
                ConvBlock(base*1,  base*2,  mode='down'),
                ConvBlock(base*2,  base*4,  mode='down'),
                ResBlock (base*4,  base*4),
                ResBlock (base*4,  base*4),
                ResBlock (base*4,  base*4),
                ResBlock (base*4,  base*4),
                ResBlock (base*4,  base*4),
                ConvBlock(base*4,  base*2,  mode='up'),
                ConvBlock(base*2,  base*1,  mode='up'),
                ConvBlock(base*1,  1,       mode='none', bn=False, activation=F.sigmoid)
            ) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:16,代碼來源:models_1d.py

示例14: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __call__(self, x):
        image, steps = x
        h = self.image2hidden(image) * F.sigmoid(self.embed(steps))
        return self.hidden2out(h) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:6,代碼來源:train_dqn_batch_grasping.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import sigmoid [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        self.pred = F.reshape(h, (x.data.shape[0], 16, 16))

        if t is not None:
            self.loss = F.sigmoid_cross_entropy(self.pred, t, normalize=False)
            return self.loss
        else:
            self.pred = F.sigmoid(self.pred)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:16,代碼來源:MnihCNN_single.py


注:本文中的chainer.functions.sigmoid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。