當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.separate方法代碼示例

本文整理匯總了Python中chainer.functions.separate方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.separate方法的具體用法?Python functions.separate怎麽用?Python functions.separate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.separate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_separate

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def test_separate(self):
        class Test():
            def forward(self):
                F.separate(np.zeros((3, 4, 5)), axis=0)

        id2type = generate_id2type_from_forward(Test(), ())

        self.assertEqual(str(id2type[1]), "class Test -> NoneType")	# FunctionDef forward (line 1)
        self.assertEqual(str(id2type[5]), "NoneType")	# Expr
        self.assertEqual(str(id2type[6]), "(Variable(float64, (4, 5)), Variable(float64, (4, 5)), Variable(float64, (4, 5)))")	# Call F.separate(np.zeros((3, 4, 5)), axis=0) (line 2)
        self.assertEqual(str(id2type[11]), "ndarray(float64, (3, 4, 5))")	# Call np.zeros((3, 4, 5)) (line 2)
        self.assertEqual(str(id2type[16]), "(int, int, int)")	# Tuple (3, 4, 5) (line 2)
        self.assertEqual(str(id2type[17]), "int")	# Num 3 (line 2)
        self.assertEqual(str(id2type[18]), "int")	# Num 4 (line 2)
        self.assertEqual(str(id2type[19]), "int")	# Num 5 (line 2)
        self.assertEqual(str(id2type[22]), "int")	# Num 0 (line 2) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:18,代碼來源:ExtFunctions_test.py

示例2: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def calc_loss(self, x, t):
        batch_predictions, _, grids = x
        self.xp = cuda.get_array_module(batch_predictions, t)

        loss = self.calc_actual_loss(batch_predictions, None, t)

        # reshape grids
        batch_size = t.shape[0]
        grids = grids[-1]
        grid_shape = grids.shape
        grids = F.reshape(grids, (-1, batch_size) + grid_shape[1:])

        grid_losses = []
        for grid in F.separate(grids, axis=0):
            with cuda.get_device_from_array(getattr(grid, 'data', grid[0].data)):
                grid_losses.append(self.calc_direction_loss(grid))

        return loss + (sum(grid_losses) / len(grid_losses)) 
開發者ID:Bartzi,項目名稱:see,代碼行數:20,代碼來源:textrec_metrics.py

示例3: calc_loss

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def calc_loss(self, x, t):
        batch_predictions, _, _ = x

        # concat all individual predictions and slice for each time step
        batch_predictions = F.concat([F.expand_dims(p, axis=0) for p in batch_predictions], axis=0)

        self.xp = cuda.get_array_module(batch_predictions[0], t)
        batch_size = t.shape[0]
        t = F.reshape(t, (batch_size, self.num_timesteps, -1))

        losses = []
        for predictions, labels in zip(F.separate(batch_predictions, axis=0), F.separate(t, axis=1)):
            batch_size, num_chars, num_classes = predictions.shape
            predictions = F.reshape(predictions, (batch_size * num_chars, num_classes))
            labels = F.reshape(labels, (-1,))
            losses.append(F.softmax_cross_entropy(predictions, labels))

        return sum(losses) 
開發者ID:Bartzi,項目名稱:see,代碼行數:20,代碼來源:svhn_softmax_metrics.py

示例4: attend

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def attend(self, encoded_features):
        self.out_lstm.reset_state()
        transformed_encoded_features = F.concat([F.expand_dims(self.transform_encoded_features(feature), axis=1) for feature in encoded_features], axis=1)
        concat_encoded_features = F.concat([F.expand_dims(e, axis=1) for e in encoded_features], axis=1)

        lstm_output = self.xp.zeros_like(encoded_features[0])
        outputs = []
        for _ in range(self.num_labels):
            transformed_lstm_output = self.transform_out_lstm_feature(lstm_output)
            attended_feats = []
            for transformed_encoded_feature in F.separate(transformed_encoded_features, axis=1):
                attended_feat = transformed_encoded_feature + transformed_lstm_output
                attended_feat = F.tanh(attended_feat)
                attended_feats.append(self.generate_attended_feat(attended_feat))

            attended_feats = F.concat(attended_feats, axis=1)
            alphas = F.softmax(attended_feats, axis=1)

            lstm_input_feature = F.batch_matmul(alphas, concat_encoded_features, transa=True)
            lstm_input_feature = F.squeeze(lstm_input_feature, axis=1)
            lstm_output = self.out_lstm(lstm_input_feature)
            outputs.append(lstm_output)
        return outputs 
開發者ID:Bartzi,項目名稱:see,代碼行數:25,代碼來源:fsns.py

示例5: decode_predictions

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def decode_predictions(self, predictions):
        # concat all individual predictions and slice for each time step
        predictions = F.concat([F.expand_dims(p, axis=0) for p in predictions], axis=0)

        words = []
        with cuda.get_device_from_array(predictions.data):
            for prediction in F.separate(predictions, axis=0):
                prediction = F.squeeze(prediction, axis=0)
                prediction = F.softmax(prediction, axis=1)
                prediction = self.xp.argmax(prediction.data, axis=1)
                word = self.loss_metrics.strip_prediction(prediction[self.xp.newaxis, ...])[0]
                if len(word) == 1 and word[0] == 0:
                    return ''

                word = "".join(map(self.loss_metrics.label_to_char, word))
                word = word.replace(chr(self.loss_metrics.char_map[str(self.loss_metrics.blank_symbol)]), '')
                words.append(word)

        text = " ".join(words)
        return text 
開發者ID:Bartzi,項目名稱:see,代碼行數:22,代碼來源:svhn_bbox_plotter.py

示例6: draw_bboxes

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def draw_bboxes(self, bboxes, image):
        draw = ImageDraw.Draw(image)
        for i, sub_box in enumerate(F.separate(bboxes, axis=1)):
            for bbox, colour in zip(F.separate(sub_box, axis=0), self.colours):
                bbox.data[...] = (bbox.data[...] + 1) / 2
                bbox.data[0, :] *= self.image_size.width
                bbox.data[1, :] *= self.image_size.height

                x = self.xp.clip(bbox.data[0, :].reshape(self.out_size), 0, self.image_size.width) + i * self.image_size.width
                y = self.xp.clip(bbox.data[1, :].reshape(self.out_size), 0, self.image_size.height)

                top_left = (x[0, 0], y[0, 0])
                top_right = (x[0, -1], y[0, -1])
                bottom_left = (x[-1, 0], y[-1, 0])
                bottom_right = (x[-1, -1], y[-1, -1])

                corners = [top_left, top_right, bottom_right, bottom_left]
                next_corners = corners[1:] + [corners[0]]

                for first_corner, next_corner in zip(corners, next_corners):
                    draw.line([first_corner, next_corner], fill=colour, width=3) 
開發者ID:Bartzi,項目名稱:see,代碼行數:23,代碼來源:bbox_plotter.py

示例7: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def __call__(self, input_ids, input_mask, token_type_ids):
        final_hidden = self.bert.get_sequence_output(
            input_ids,
            input_mask,
            token_type_ids)
        batch_size = final_hidden.shape[0]
        seq_length = final_hidden.shape[1]
        hidden_size = final_hidden.shape[2]

        final_hidden_matrix = F.reshape(
            final_hidden, [batch_size * seq_length, hidden_size])

        logits = self.output(final_hidden_matrix)

        logits = F.reshape(logits, [batch_size, seq_length, 2])
        logits = logits - (1 - input_mask[:, :, None]) * 1000.  # ignore pads
        logits = F.transpose(logits, [2, 0, 1])

        unstacked_logits = F.separate(logits, axis=0)

        (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])
        return (start_logits, end_logits) 
開發者ID:chainer,項目名稱:models,代碼行數:24,代碼來源:modeling.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def __call__(self, rois):
        batch_size, num_bboxes, num_channels, height, width = rois.shape
        rois = F.reshape(rois, (-1, num_channels, height, width))

        # if not chainer.config.user_text_recognition_grayscale_input:
        #     # convert data to grayscale
        #     assert rois.shape[1] == 3, "rois are not in RGB, can not convert them to grayscale"
        #     r, g, b = F.separate(rois, axis=1)
        #     grey = 0.299 * r + 0.587 * g + 0.114 * b
        #     rois = F.stack([grey, grey, grey], axis=1)

        h = self.feature_extractor(rois)
        _, num_channels, feature_height, feature_width = h.shape
        h = F.average_pooling_2d(h, (feature_height, feature_width))

        h = F.reshape(h, (batch_size, num_bboxes, num_channels, -1))

        all_predictions = []
        for box in F.separate(h, axis=1):
            # box_predictions = [self.classifier(self.lstm(box)) for _ in range(self.num_chars)]
            box_predictions = [self.classifier(box) for _ in range(self.num_chars)]
            all_predictions.append(F.stack(box_predictions, axis=1))

        # return shape: batch_size, num_bboxes, num_chars, num_classes
        return F.stack(all_predictions, axis=2) 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:27,代碼來源:text_recognizer.py

示例9: draw_bboxes

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def draw_bboxes(self, bboxes, image):
        if len(bboxes) == 0:
            return
        draw = ImageDraw.Draw(image)
        for i, sub_box in enumerate(F.separate(bboxes, axis=1)):
            for bbox, colour in zip(F.separate(sub_box, axis=0), self.colours()):
                bbox.data[...] = (bbox.data[...] + 1) / 2
                bbox.data[0, :] *= self.image_size.width
                bbox.data[1, :] *= self.image_size.height

                x = self.xp.clip(bbox.data[0, :].reshape(self.out_size), 0, self.image_size.width) + i * self.image_size.width
                y = self.xp.clip(bbox.data[1, :].reshape(self.out_size), 0, self.image_size.height)

                top_left = (x[0, 0], y[0, 0])
                top_right = (x[0, -1], y[0, -1])
                bottom_left = (x[-1, 0], y[-1, 0])
                bottom_right = (x[-1, -1], y[-1, -1])

                corners = [top_left, top_right, bottom_right, bottom_left]
                self.draw_bbox(colour, corners, draw) 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:22,代碼來源:bbox_plotter.py

示例10: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def __call__(self, h):
        # type: (chainer.Variable) -> chainer.Variable
        xp = cuda.get_array_module(h)
        mb, node, ch = h.shape  # type: int, int, int
        if self.q_star is None:
            self.q_star = [
                xp.zeros((1, self.in_channels * 2)).astype('f')
                for _ in range(mb)
            ]
        self.hx, self.cx, q = self.lstm_layer(self.hx, self.cx, self.q_star)
        # self.hx: (mb, mb, ch)
        # self.cx: (mb, mb, ch)
        # q: List[(1, ch) * mb]
        q = functions.stack(q)  # q: (mb, 1, ch)
        q_ = functions.transpose(q, axes=(0, 2, 1))  # q_: (mb, ch, 1)
        e = functions.matmul(h, q_)  # e: (mb, node, 1)
        a = functions.softmax(e)  # a: (mb, node, 1)
        a = functions.broadcast_to(a, h.shape)  # a: (mb, node, ch)
        r = functions.sum((a * h), axis=1, keepdims=True)  # r: (mb, 1, ch)
        q_star_ = functions.concat((q, r), axis=2)  # q_star_: (mb, 1, ch*2)
        self.q_star = functions.separate(q_star_)
        return functions.reshape(q_star_, (mb, ch * 2)) 
開發者ID:chainer,項目名稱:chainer-chemistry,代碼行數:24,代碼來源:set2set.py

示例11: _extract_gates

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def _extract_gates(x):
    r = F.reshape(x, (len(x), x.shape[1] // 4, 4) + x.shape[2:])
    r = F.separate(r, axis=2)
    return r[0], r[1], r[2], r[3] 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:6,代碼來源:StatelessLSTM.py

示例12: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def forward(self, x):
        return list(F.separate(x)) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:4,代碼來源:Separate.py

示例13: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def forward(self, xs, activation=None):
        ilens = [x.shape[0] for x in xs]
        # xs: (B, T, F)
        xs = F.pad_sequence(xs, padding=-1)
        pad_shape = xs.shape
        # emb: (B*T, E)
        emb = self.enc(xs)
        # ys: (B*T, C)
        ys = self.linear(emb)
        if activation:
            ys = activation(ys)
        # ys: [(T, C), ...]
        ys = F.separate(ys.reshape(pad_shape[0], pad_shape[1], -1), axis=0)
        ys = [F.get_item(y, slice(0, ilen)) for y, ilen in zip(ys, ilens)]
        return ys 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:17,代碼來源:models.py

示例14: forward

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def forward(self, inputs, device):
        x, = inputs
        return functions.separate(x, self.axis) 
開發者ID:chainer,項目名稱:chainer,代碼行數:5,代碼來源:test_separate.py

示例15: test_output

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import separate [as 別名]
def test_output(self):
        n_layers = self.n_layers
        dropout_ratio = 0.0
        batch_size = 3
        input_size = 4
        hidden_size = 5
        seq_length = 6

        class Model(chainer.Chain):
            def __init__(self):
                super().__init__()

            def __call__(self, hx, ws1, ws2, ws3, bs, xs):
                ws = [F.separate(ws1) + F.separate(ws2)]
                if n_layers > 1:
                    ws.extend([F.separate(w) for w in F.separate(ws3)])
                bs = [F.separate(b) for b in F.separate(bs)]
                xs = F.separate(xs)
                hy, ys = F.n_step_gru(n_layers, dropout_ratio,
                                      hx, ws, bs, xs)
                return hy, F.stack(ys, axis=0)

        model = Model()

        hx = input_generator.increasing(n_layers, batch_size, hidden_size)
        ws1 = input_generator.increasing(3, hidden_size, input_size)
        ws2 = input_generator.increasing(3, hidden_size, hidden_size)
        ws3 = input_generator.increasing(
            n_layers - 1, 6, hidden_size, hidden_size)
        bs = input_generator.increasing(n_layers, 6, hidden_size)
        xs = input_generator.increasing(seq_length, batch_size, input_size)

        self.expect(model, (hx, ws1, ws2, ws3, bs, xs)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:35,代碼來源:test_rnn.py


注:本文中的chainer.functions.separate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。