本文整理匯總了Python中chainer.functions.roi_pooling_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.roi_pooling_2d方法的具體用法?Python functions.roi_pooling_2d怎麽用?Python functions.roi_pooling_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類chainer.functions
的用法示例。
在下文中一共展示了functions.roi_pooling_2d方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_forward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def check_forward(self, x_data, roi_data):
x = chainer.Variable(x_data)
rois = chainer.Variable(roi_data)
y = functions.roi_pooling_2d(
x, rois, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale)
self.assertEqual(y.data.dtype, self.dtype)
y_data = cuda.to_cpu(y.data)
self.assertEqual(self.gy.shape, y_data.shape)
示例2: test_forward_cpu_gpu_equal
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def test_forward_cpu_gpu_equal(self):
# cpu
x_cpu = chainer.Variable(self.x)
rois_cpu = chainer.Variable(self.rois)
y_cpu = functions.roi_pooling_2d(
x_cpu, rois_cpu, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale)
# gpu
x_gpu = chainer.Variable(cuda.to_gpu(self.x))
rois_gpu = chainer.Variable(cuda.to_gpu(self.rois))
y_gpu = functions.roi_pooling_2d(
x_gpu, rois_gpu, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale)
testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
示例3: check_backward
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def check_backward(self, x_data, roi_data, y_grad):
def f(x, rois):
return functions.roi_pooling_2d(
x, rois, outh=self.outh, outw=self.outw,
spatial_scale=self.spatial_scale)
gradient_check.check_backward(
f, (x_data, roi_data), y_grad, no_grads=[False, True],
**self.check_backward_options)
示例4: setUp
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def setUp(self):
# these parameters are referenced from chainer test
in_shape = (3, 3, 12, 8)
self.x = input_generator.positive_increasing(*in_shape)
# In chainer test, x is shuffled and normalize-like conversion,
# In this test, those operations are skipped.
# If x includes negative value, not match with onnxruntime output.
# You can reproduce this issue by changing `positive_increasing` to
# `increase`
self.rois = np.array([
[0, 1, 1, 6, 6],
[2, 6, 2, 7, 11],
[1, 3, 1, 5, 10],
[0, 3, 3, 3, 3]], dtype=np.float32)
kwargs = {
'outh': 3,
'outw': 7,
'spatial_scale': 0.6
}
class Model(chainer.Chain):
def __init__(self, kwargs):
super(Model, self).__init__()
self.kwargs = kwargs
def __call__(self, x, rois):
return F.roi_pooling_2d(x, rois, **self.kwargs)
self.model = Model(kwargs)
示例5: test_roi_module
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def test_roi_module():
## fake data###
B, N, C, H, W, PH, PW = 2, 8, 4, 32, 32, 7, 7
bottom_data = t.randn(B, C, H, W).cuda()
bottom_rois = t.randn(N, 5)
bottom_rois[:int(N / 2), 0] = 0
bottom_rois[int(N / 2):, 0] = 1
bottom_rois[:, 1:] = (t.rand(N, 4) * 100).float()
bottom_rois = bottom_rois.cuda()
spatial_scale = 1. / 16
outh, outw = PH, PW
# pytorch version
module = RoIPooling2D(outh, outw, spatial_scale)
x = bottom_data.requires_grad_()
rois = bottom_rois.detach()
output = module(x, rois)
output.sum().backward()
def t2c(variable):
npa = variable.data.cpu().numpy()
return cp.array(npa)
def test_eq(variable, array, info):
cc = cp.asnumpy(array)
neq = (cc != variable.data.cpu().numpy())
assert neq.sum() == 0, 'test failed: %s' % info
# chainer version,if you're going to run this
# pip install chainer
import chainer.functions as F
from chainer import Variable
x_cn = Variable(t2c(x))
o_cn = F.roi_pooling_2d(x_cn, t2c(rois), outh, outw, spatial_scale)
test_eq(output, o_cn.array, 'forward')
F.sum(o_cn).backward()
test_eq(x.grad, x_cn.grad, 'backward')
print('test pass')
示例6: _roi_pooling_2d_yx
# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import roi_pooling_2d [as 別名]
def _roi_pooling_2d_yx(x, indices_and_rois, outh, outw, spatial_scale):
xy_indices_and_rois = indices_and_rois[:, [0, 2, 1, 4, 3]]
pool = F.roi_pooling_2d(
x, xy_indices_and_rois, outh, outw, spatial_scale)
return pool