當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.reshape方法代碼示例

本文整理匯總了Python中chainer.functions.reshape方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.reshape方法的具體用法?Python functions.reshape怎麽用?Python functions.reshape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在chainer.functions的用法示例。


在下文中一共展示了functions.reshape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, x):
        if self.dr:
            with chainer.using_config('train', True):
                x = F.dropout(x, self.dr)
        if self.gap:
            x = F.sum(x, axis=(2,3))
        N = x.shape[0]
        #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py
        feature = F.reshape(F.leaky_relu(x), (N, -1))
        m = F.reshape(self.md(feature), (N, self.B * self.C, 1))
        m0 = F.broadcast_to(m, (N, self.B * self.C, N))
        m1 = F.transpose(m0, (2, 1, 0))
        d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N)))
        d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1
        h = F.concat([feature, d])

        h = self.l(h)
        return h 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:20,代碼來源:block.py

示例2: generate_image

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def generate_image(self, v, r):
        xp = cuda.get_array_module(v)

        batch_size = v.shape[0]
        h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
            batch_size, xp)
        v = cf.reshape(v, v.shape[:2] + (1, 1))

        for t in range(self.num_layers):
            generation_core = self.get_generation_core(t)

            mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
                h_t_gen)
            z_t = cf.gaussian(mean_z_p, ln_var_z_p)

            h_next_gen, c_next_gen, u_next = generation_core(
                h_t_gen, c_t_gen, z_t, v, r, u_t)

            u_t = u_next
            h_t_gen = h_next_gen
            c_t_gen = c_next_gen

        mean_x = self.map_u_x(u_t)
        return mean_x.data 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:26,代碼來源:model.py

示例3: generate_image_from_zero_z

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def generate_image_from_zero_z(self, v, r):
        xp = cuda.get_array_module(v)

        batch_size = v.shape[0]
        h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
            batch_size, xp)

        v = cf.reshape(v, v.shape[:2] + (1, 1))

        for t in range(self.num_layers):
            generation_core = self.get_generation_core(t)

            mean_z_p, _ = self.z_prior_distribution.compute_parameter(h_t_gen)
            z_t = xp.zeros_like(mean_z_p.data)

            h_next_gen, c_next_gen, u_next = generation_core(
                h_t_gen, c_t_gen, z_t, v, r, u_t)

            u_t = u_next
            h_t_gen = h_next_gen
            c_t_gen = c_next_gen

        mean_x = self.map_u_x(u_t)
        return mean_x.data 
開發者ID:musyoku,項目名稱:chainer-gqn,代碼行數:26,代碼來源:model.py

示例4: __init__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __init__(self, n_actions, max_episode_steps):
        super().__init__()
        with self.init_scope():
            self.embed = L.EmbedID(max_episode_steps + 1, 3136)
            self.image2hidden = chainerrl.links.Sequence(
                L.Convolution2D(None, 32, 8, stride=4),
                F.relu,
                L.Convolution2D(None, 64, 4, stride=2),
                F.relu,
                L.Convolution2D(None, 64, 3, stride=1),
                functools.partial(F.reshape, shape=(-1, 3136)),
            )
            self.hidden2out = chainerrl.links.Sequence(
                L.Linear(None, 512),
                F.relu,
                L.Linear(None, n_actions),
                DiscreteActionValue,
            ) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:train_dqn_batch_grasping.py

示例5: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, x):
        h = x
        for l in self.conv_layers:
            h = self.activation(l(h))

        # Advantage
        batch_size = x.shape[0]
        ya = self.a_stream(h)
        mean = F.reshape(
            F.sum(ya, axis=1) / self.n_actions, (batch_size, 1))
        ya, mean = F.broadcast(ya, mean)
        ya -= mean

        # State value
        ys = self.v_stream(h)

        ya, ys = F.broadcast(ya, ys)
        q = ya + ys
        return action_value.DiscreteActionValue(q) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:21,代碼來源:dueling_dqn.py

示例6: _compute_y_and_t

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def _compute_y_and_t(self, exp_batch):
        batch_size = exp_batch['reward'].shape[0]

        # Compute Q-values for current states
        batch_state = exp_batch['state']

        if self.recurrent:
            qout, _ = self.model.n_step_forward(
                batch_state,
                exp_batch['recurrent_state'],
                output_mode='concat',
            )
        else:
            qout = self.model(batch_state)

        batch_actions = exp_batch['action']
        batch_q = F.reshape(qout.evaluate_actions(
            batch_actions), (batch_size, 1))

        with chainer.no_backprop_mode():
            batch_q_target = F.reshape(
                self._compute_target_values(exp_batch),
                (batch_size, 1))

        return batch_q, batch_q_target 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:27,代碼來源:dqn.py

示例7: _evaluate_psi_x_with_quantile_thresholds

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def _evaluate_psi_x_with_quantile_thresholds(psi_x, phi, f, taus):
    assert psi_x.ndim == 2
    batch_size, hidden_size = psi_x.shape
    assert taus.ndim == 2
    assert taus.shape[0] == batch_size
    n_taus = taus.shape[1]
    phi_taus = phi(taus)
    assert phi_taus.ndim == 3
    assert phi_taus.shape == (batch_size, n_taus, hidden_size)
    psi_x_b = F.broadcast_to(
        F.expand_dims(psi_x, axis=1), phi_taus.shape)
    h = psi_x_b * phi_taus
    h = F.reshape(h, (-1, hidden_size))
    assert h.shape == (batch_size * n_taus, hidden_size)
    h = f(h)
    assert h.ndim == 2
    assert h.shape[0] == batch_size * n_taus
    n_actions = h.shape[-1]
    h = F.reshape(h, (batch_size, n_taus, n_actions))
    return QuantileDiscreteActionValue(h) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:22,代碼來源:iqn.py

示例8: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.relu(self.fc4(h))
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_rcis.py

示例9: channelwise_inhibited

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def channelwise_inhibited(self, h):
        xp = cuda.get_array_module(h.data)
        num = h.data.shape[0]

        h = F.split_axis(h, 3, 1)
        c = F.reshape(h[self.c], (num, 16, 16))
        z = Variable(xp.zeros_like(c.data), 'AUTO')
        c = F.batch_matmul(c, z)
        c = F.reshape(c, (num, 1, 16, 16))
        hs = []
        for i, s in enumerate(h):
            if i == self.c:
                hs.append(c)
            else:
                hs.append(s)
        return F.concat(hs, 1) 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例10: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, x, t):
        h = F.relu(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 1)
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        h = F.dropout(F.relu(self.fc4(h)), train=self.train)
        h = self.fc5(h)
        h = F.reshape(h, (x.data.shape[0], 3, 16, 16))
        h = self.channelwise_inhibited(h)

        if self.train:
            self.loss = F.softmax_cross_entropy(h, t, normalize=False)
            return self.loss
        else:
            self.pred = F.softmax(h)
            return self.pred 
開發者ID:mitmul,項目名稱:ssai-cnn,代碼行數:18,代碼來源:MnihCNN_cis.py

示例11: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, inpt, mask):
        mb_size = inpt.data.shape[0]
        max_length = inpt.data.shape[1]

        precomp = F.reshape(F.tanh(self.lin(F.reshape(inpt, (-1, self.Hi)))), (mb_size, -1, self.Ho))

        mask_offset = max_length - len(mask)

        precomp_mask_penalties = self.xp.concatenate(
            [
                self.xp.zeros((mb_size, mask_offset), dtype=self.xp.float32),
                -10000 * (1 - self.xp.concatenate([
                    self.xp.reshape(mask_elem, (mb_size, 1)).astype(self.xp.float32) for mask_elem in mask], 1))
            ], 1
        )

        def compute_copy_coefficients(state):
            betas = F.reshape(batch_matmul(precomp, state), (mb_size, -1))
            masked_betas = betas + precomp_mask_penalties
            return masked_betas

        return compute_copy_coefficients 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:24,代碼來源:attention.py

示例12: get_initial_logits

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def get_initial_logits(self, mb_size = None):
        if mb_size is None:
            mb_size = self.src_mb_size
        else:
            assert self.src_mb_size == 1
        assert mb_size is not None
    
        bos_encoding = F.broadcast_to(self.decoder_chain.bos_encoding, (mb_size, 1, self.decoder_chain.d_model))
        
        cross_mask = self.decoder_chain.xp.broadcast_to(self.mask_input[:,0:1,0:1,:], (self.mask_input.shape[0], self.decoder_chain.n_heads, 1, self.mask_input.shape[3]))
        
        final_layer, prev_states =  self.decoder_chain.encoding_layers.one_step(bos_encoding, None,
                                                               self.src_encoding, cross_mask)
        
        logits = self.decoder_chain.logits_layer(F.reshape(final_layer, (mb_size, self.decoder_chain.d_model)))
        return logits, DecoderState(pos=-1, prev_states=prev_states) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:18,代碼來源:decoder.py

示例13: _initialize_params

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def _initialize_params(self):
        lateral_init = initializers._get_initializer(self.lateral_init)
        upward_init = initializers._get_initializer(self.upward_init)
        bias_init = initializers._get_initializer(self.bias_init)
        forget_bias_init = initializers._get_initializer(self.forget_bias_init)

        for i in six.moves.range(0, 4 * self.state_size, self.state_size):
            lateral_init(self.lateral.W.data[i:i + self.state_size, :])
            upward_init(self.upward.W.data[i:i + self.state_size, :])

        a, i, f, o = lstm._extract_gates(
            self.upward.b.data.reshape(1, 4 * self.state_size, 1))

        bias_init(a)
        bias_init(i)
        forget_bias_init(f)
        bias_init(o) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:19,代碼來源:StatelessLSTM.py

示例14: pixel_shuffle

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def pixel_shuffle(self, x):
        out = self.ps(x)
        b = out.shape[0]
        c = out.shape[1]
        h = out.shape[2]
        w = out.shape[3]
        out = F.reshape(out, (b, 2, 2, c//4, h, w))
        out = F.transpose(out, (0, 3, 4, 1, 5, 2))
        out = F.reshape(out, (b, c//4, h*2, w*2))
        return out 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:12,代碼來源:block.py

示例15: __call__

# 需要導入模塊: from chainer import functions [as 別名]
# 或者: from chainer.functions import reshape [as 別名]
def __call__(self, x):
        b = x.shape[0]
        c = 1#x.shape[1]
        h = x.shape[2]
        w = x.shape[3]
        x = F.reshape(x, (b*h,c,w))

        x = add_noise(x)
        for l in self:
            x = l(x)
        return x 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:13,代碼來源:models_1d.py


注:本文中的chainer.functions.reshape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。